Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Vinylidene alcohols

In addition to alcohols, some other nucleophiles such as amines and carbon nucleophiles can be used to trap the acylpalladium intermediates. The o-viny-lidene-/j-lactam 30 is prepared by the carbonylation of the 4-benzylamino-2-alkynyl methyl carbonate derivative 29[16]. The reaction proceeds using TMPP, a cyclic phosphite, as a ligand. When the amino group is protected as the p-toluenesulfonamide, the reaction proceeds in the presence of potassium carbonate, and the f>-alkynyl-/J-lactam 31 is obtained by the isomerization of the allenyl (vinylidene) group to the less strained alkyne. [Pg.457]

Asphalt, unmodified Coal tar Coal tar— epoxy Coal tar— nretlianes Epoxy phenolic- baked Epoxy amine- cnred Epoxy ester Fnrfnryl alcohol Phenolics, baked Polyesters (nnsati i-rated) Polyvinyl cliloracetates Vinyl ester Urethanes Vinylidene cliloride Clilorinated rubber... [Pg.2468]

Comparison of Table 5.4 and 5.7 allows the prediction that aromatic oils will be plasticisers for natural rubber, that dibutyl phthalate will plasticise poly(methyl methacrylate), that tritolyl phosphate will plasticise nitrile rubbers, that dibenzyl ether will plasticise poly(vinylidene chloride) and that dimethyl phthalate will plasticise cellulose diacetate. These predictions are found to be correct. What is not predictable is that camphor should be an effective plasticiser for cellulose nitrate. It would seem that this crystalline material, which has to be dispersed into the polymer with the aid of liquids such as ethyl alcohol, is only compatible with the polymer because of some specific interaction between the carbonyl group present in the camphor with some group in the cellulose nitrate. [Pg.88]

Poly(ethylene terephtlhalate) Phenol-formaldehyde Polyimide Polyisobutylene Poly(methyl methacrylate), acrylic Poly-4-methylpentene-1 Polyoxymethylene polyformaldehyde, acetal Polypropylene Polyphenylene ether Polyphenylene oxide Poly(phenylene sulphide) Poly(phenylene sulphone) Polystyrene Polysulfone Polytetrafluoroethylene Polyurethane Poly(vinyl acetate) Poly(vinyl alcohol) Poly(vinyl butyral) Poly(vinyl chloride) Poly(vinylidene chloride) Poly(vinylidene fluoride) Poly(vinyl formal) Polyvinylcarbazole Styrene Acrylonitrile Styrene butadiene rubber Styrene-butadiene-styrene Urea-formaldehyde Unsaturated polyester... [Pg.434]

The program will be demonstrated with poly(vinyl alcohol) for tacticity analysis and with copolymer vinylidene chloride isobutylene for monomer sequence analysis. Peak assignments in C-13 spectra were obtained independently by two-dimensional NMR techniques. In some cases, assignments have been extended to longer sequences and confirmed via simulation of the experimental data. Experimental and "best-fit" simulated spectra will be compared. [Pg.161]

The head-to-tail arrangement in poly-(vinyl alcohol) is further confirmed by its X-ray diffraction pattern in the crystalline state. Likewise, analysis of the X-ray diffraction of crystalline poly-(vinylidene chloride), (—CH2—CCI2—)x, and of crystalline (stretched) polyisobutylene, [—CH2—C(CH3)2—]x, shows the units to be arranged in these cases also in the expected head-to-tail forms. [Pg.237]

Poly(vinyl chloride) (PVC) Poly(vinylidene chloride) (PVDC) Poly (vinyl alcohol) (PVOH) Poly(vinyl acetal)... [Pg.147]

Etherification using a metal vinylidene has also been combined with G-G bond formation through the reaction of an alkynyl tungsten complex with benzaldehyde (Scheme 14). The addition of an internal alcohol to the incipient /3,/Udialkylvinylidene that is generated leads to dehydration and the formation of a Fischer-type alkylidene complex. Further reactions of this carbene with a range of nucleophiles have provided access to various furan derivatives.374,375... [Pg.677]

Attempts by Fish and Johnson to effect a steroid synthesis using a standard epoxide-initiated pentacyclization of a polyene afforded complex mixtures [69]. Alternatively, the allyl alcohol 326 was synthesized and treated with TFA (Scheme 19.60). Protonation affords a symmetrical tetramethylallyl cation that undergoes cyclization to give pentacycle 327 in 31% yield. Simultaneous cleavage of the isopropylidene and vinylidene groups was carried out to furnish the diketone 328 in 88% yield, which was then converted to sophoradiol (329). [Pg.1084]

Obviously, the first intermediates in the syntheses with terminal alkynols are the vinylidene complexes [Ru(bdmpza)Cl(=C= CH(CH2) +iOH)(PPhg)] (n = 1, 2), which then react further via an intramolecular addition of the alcohol functionality to the a-carbon (Scheme 22), although in none of our experiments we were able to observe or isolate any intermediate vinylidene complexes. The subsequent intramolecular ring closure provides the cyclic carbene complexes with a five-membered ring in case of the reaction with but-3-yn-l-ol and with a six-membered ring in case of pent-4-yn-l-ol. For both products type A and type B isomers 35a-I/35a-II and 35b-I/ 35b-II are observed (Scheme 22, Fig. 22). The molecular structure shows a type A isomer 35b-I with the carbene ligand and the triphenylphosphine ligand in the two trans positions to the pyrazoles and was obtained from an X-ray structure determination (Fig. 25). [Pg.139]

Terminal alkynes readily react with coordinatively unsaturated transition metal complexes to yield vinylidene complexes. If the vinylidene complex is sufficiently electrophilic, nucleophiles such as amides, alcohols or water can add to the a-carbon atom to yield heteroatom-substituted carbene complexes (Figure 2.10) [129 -135]. If the nucleophile is bound to the alkyne, intramolecular addition to the intermediate vinylidene will lead to the formation of heterocyclic carbene complexes [136-141]. Vinylidene complexes can further undergo [2 -i- 2] cycloadditions with imines, forming azetidin-2-ylidene complexes [142,143]. Cycloaddition to azines leads to the formation of pyrazolidin-3-ylidene complexes [143] (Table 2.7). [Pg.25]

Water-soluble mthenium vinyUdene and aUenylidene complexes were also synthetized in the reaction of [ RuCl2(TPPMS)2 2] and phenylacetylene or diphenylpropargyl alcohol [29]. The mononuclear Ru-vinylidene complex [RuCl2 C=C(H)Ph)(TPPMS)2] and the dinuclear Ru-aUylidene derivative [ RuCl(p,-Cl)(C=C=CPh2)(TPPMS)2 2] both catalyzed the cross-olefin metathesis of cyclopentene with methyl acrylate to give polyunsaturated esters under mild conditions (Scheme 7.10). [Pg.200]

The reactions are those of functionalized 1-alkynes, the first of which were described for alkynes bearing substituted hydroxymethyl groups, such as substituted propargyl alcohols, HC=CCRR (OH), and often proceed further to form metal allenylidene complexes, by spontaneous dehydration of a (usually unobserved) hydroxy-vinylidene complex (Equation 1.22) ... [Pg.42]

All the examples described in the previous section involve the addition of hetero-nudeophiles, such as alcohols and amines, to the vinylidene carbon. Addition of... [Pg.172]

Highly reactive organic vinylidene and allenylidene species can be stabilized upon coordination to a metal center [1]. In 1979, Bruce et al. [2] reported the first ruthenium vinylidene complex from phenylacetylene and [RuCpCl(PPh3)2] in the presence of NH4PF6. Following this report, various mthenium vinylidene complexes have been isolated and their physical and chemical properties have been extensively elucidated [3]. As the a-carbon of ruthenium vinylidenes and the a and y-carbon of ruthenium allenylidenes are electrophilic in nature [4], the direct formation of ruthenium vinylidene and ruthenium allenylidene species, respectively, from terminal alkynes and propargylic alcohols provides easy access to numerous catalytic reactions since nucleophilic addition at these carbons is a viable route for new catalysis (Scheme 6.1). [Pg.193]

Based on the labeling experiments, a plausible mechanism involving mthenium vinylidene intermediates SS is proposed in Scheme 6.21. Cydization of this vinylidene intermediate leads to the formation of the epoxy carbenium 56, which then undergoes an epoxide opening to form l,4-dien-3-ol 57. A subsequent pinacol rearrangement of this alcohol furnishes ketone 58, providing the required skeleton for the observed phenol product 54. [Pg.204]


See other pages where Vinylidene alcohols is mentioned: [Pg.605]    [Pg.605]    [Pg.321]    [Pg.337]    [Pg.440]    [Pg.494]    [Pg.507]    [Pg.417]    [Pg.722]    [Pg.10]    [Pg.114]    [Pg.34]    [Pg.457]    [Pg.34]    [Pg.677]    [Pg.327]    [Pg.140]    [Pg.155]    [Pg.156]    [Pg.179]    [Pg.875]    [Pg.882]    [Pg.291]    [Pg.17]    [Pg.42]    [Pg.44]    [Pg.65]    [Pg.73]    [Pg.74]    [Pg.77]    [Pg.89]    [Pg.143]   
See also in sourсe #XX -- [ Pg.21 ]




SEARCH



Iron vinylidenes reaction with alcohols

Ruthenium vinylidenes reaction with alcohols

Vinylidene

Vinylidenes

© 2024 chempedia.info