Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Vibrational frequencies intensities

Table 14 Harmonic Vibrational Frequencies (Intensities) of CH2N (DZP and TZ2P Basis)"... [Pg.121]

Due to the rather stringent requirements placed on the monochromator, a double or triple monocln-omator is typically employed. Because the vibrational frequencies are only several hundred to several thousand cm and the linewidths are only tens of cm it is necessary to use a monochromator with reasonably high resolution. In addition to linewidth issues, it is necessary to suppress the very intense Rayleigh scattering. If a high resolution spectrum is not needed, however, then it is possible to use narrow-band interference filters to block the excitation line, and a low resolution monocln-omator to collect the spectrum. In fact, this is the approach taken with Fourier transfonn Raman spectrometers. [Pg.1164]

It is also possible to measure microwave spectra of some more strongly bound Van der Waals complexes in a gas cell ratlier tlian a molecular beam. Indeed, tire first microwave studies on molecular clusters were of this type, on carboxylic acid dimers [jd]. The resolution tliat can be achieved is not as high as in a molecular beam, but bulk gas studies have tire advantage tliat vibrational satellites, due to pure rotational transitions in complexes witli intennolecular bending and stretching modes excited, can often be identified. The frequencies of tire vibrational satellites contain infonnation on how the vibrationally averaged stmcture changes in tire excited states, while their intensities allow tire vibrational frequencies to be estimated. [Pg.2442]

The electronic transitions which produce spectra in the visible and ultraviolet are accompanied by vibrational and rotational transitions. In the condensed state, however, rotation is hindered by solvent molecules, and stray electrical fields affect the vibrational frequencies. For these reasons, electronic bands are very broad. An electronic band is characterised by the wave length and moleculai extinction coefficient at the position of maximum intensity (Xma,. and emai.). [Pg.1143]

The properties available include electrostatic charges, multipoles, polarizabilities, hyperpolarizabilities, and several population analysis schemes. Frequency correction factors can be applied automatically to computed vibrational frequencies. IR intensities may be computed along with frequency calculations. [Pg.337]

The vibration frequencies of C-H bond are noticeably higher for gaseous thiazole than for its dilute solutions in carbon tetrachloride or tor liquid samples (Table 1-27). The molar extinction coefficient and especially the integrated intensity of the same peaks decrease dramatically with dilution (203). Inversely, the y(C(2jH) and y(C(5(H) frequencies are lower for gaseous thiazole than for its solutions, and still lower than for liquid samples (cf. Table 1-27). [Pg.61]

One type of single point calculation, that of calculating vibrational properties, is distinguished as a vibrations calculation in HyperChem. A vibrations calculation predicts fundamental vibrational frequencies, infrared absorption intensities, and normal modes for a geometry optimized molecular structure. [Pg.16]

RAIRS spectra contain absorption band structures related to electronic transitions and vibrations of the bulk, the surface, or adsorbed molecules. In reflectance spectroscopy the ahsorhance is usually determined hy calculating -log(Rs/Ro), where Rs represents the reflectance from the adsorhate-covered substrate and Rq is the reflectance from the bare substrate. For thin films with strong dipole oscillators, the Berre-man effect, which can lead to an additional feature in the reflectance spectrum, must also be considered (Sect. 4.9 Ellipsometry). The frequencies, intensities, full widths at half maximum, and band line-shapes in the absorption spectrum yield information about adsorption states, chemical environment, ordering effects, and vibrational coupling. [Pg.251]

At this point, spectroscopists and molecular modellers part company because they have very different aims. Spectroscopists want to describe the vibradons of a molecule to the last possible decimal point, and their problem is how a force field should be determined as accurately as possible from a set of experimental vibrational frequencies and absorption intensities. This problem is well understood, and is discussed in definitive textbooks such as that by Wilson, Decius and Cross (1955). [Pg.38]

HyperChem 5.1 has a nice graphical display (Figure 14.11) of calculated vibrational frequencies and it is also possible to animate the vibrations. The bottom part of the display shows the calculated intensities of the spectral lines. [Pg.249]

Normal vibrational spectroscopy generates information about the molecular frequency of vibration, the intensity of the spectral line and the shape of the associated band. The first of these is related to the strength of the molecular bonds and is the main concern of this section. The intensity of the band is related to the degree to which the polarisability is modulated during the vibration and the band shape provides information about molecular reorientational motion. [Pg.32]

Table IV. Calculated vibrational frequencies and IR intensities for the C5H7 to C H,3 The frequencies are given in cm > and the intensities are relative to the most intense mode for each molecule. The types represent the following vibrations SCI CH2 in plane bend, CCS = Carbon carbon stretching, CHB = CH in plane bend... Table IV. Calculated vibrational frequencies and IR intensities for the C5H7 to C H,3 The frequencies are given in cm > and the intensities are relative to the most intense mode for each molecule. The types represent the following vibrations SCI CH2 in plane bend, CCS = Carbon carbon stretching, CHB = CH in plane bend...
Figure 16. Experimental and calculated IR resonance enhanced photodissociation spectra of Fe" (CH4)3 and Fe" (CH4)4. Experimental spectra were obtained by monitoring loss of CH4. Calculated spectra are based on vibrational frequencies and intensities calculated at the B3LYP/ 6-311+G(d,p) level. Calculated frequencies are scaled by 0.96. The calculated spectra have been convoluted with a 10-cm full width at half-maximum (FWHM) Gaussian. The D2d geometries of Fe (CH4)4 are calculated to have very similar energies, and it appears that both isomers are observed in the experiment. Figure 16. Experimental and calculated IR resonance enhanced photodissociation spectra of Fe" (CH4)3 and Fe" (CH4)4. Experimental spectra were obtained by monitoring loss of CH4. Calculated spectra are based on vibrational frequencies and intensities calculated at the B3LYP/ 6-311+G(d,p) level. Calculated frequencies are scaled by 0.96. The calculated spectra have been convoluted with a 10-cm full width at half-maximum (FWHM) Gaussian. The D2d geometries of Fe (CH4)4 are calculated to have very similar energies, and it appears that both isomers are observed in the experiment.
The fitted and calculated vibrational frequencies and normal mode composition factors corresponding to the 17 most important NIS bands are presented in Table 5.9. It is evident that the vibrational peaks in the calculated NIS spectrum are typically 0-30 cm lower than to the experimental values. In the calculated NIS spectra, there are two small peaks at 635 and 716 cm (Fig. 5.14b) that are not visible in the experimental spectrum. According to the normal mode calculations these are Fe-N-N and Fe-O-C deformation vibrations. Small admixtures of Fe-N and Fe-O stretching modes account for the calculated nonzero normal mode composition factors. Although the calculated relative intensities are slightly above detection limit dictated by the signal-to-noise ratio, they are determined by values of pea which are very small (0.028 and 0.026 for the peaks at 635 and 716 cm ). They must be considered to be within the uncertainties of the theoretical... [Pg.190]

Anti-Stokes picosecond TR spectra were also obtained with pump-probe time delays over the 0 to 10 ps range and selected spectra are shown in Figure 3.33. The anti-Stokes Raman spectrum at Ops indicates that hot, unrelaxed, species are produced. The approximately 1521 cm ethylenic stretch Raman band vibrational frequency also suggests that most of the Ops anti-Stokes TR spectrum is mostly due to the J intermediate. The 1521 cm Raman band s intensity and its bandwidth decrease with a decay time of about 2.5 ps, and this can be attributed the vibrational cooling and conformational relaxation of the chromophore as the J intermediate relaxes to produce the K intermediate.This very fast relaxation of the initially hot J intermediate is believed to be due to strong coupling between the chromophore the protein bath that can enable better energy transfer compared to typical solute-solvent interactions. ... [Pg.170]

The computational prediction of vibrational spectra is among the important areas of application for modem quantum chemical methods because it allows the interpretation of experimental spectra and can be very instrumental for the identification of unknown species. A vibrational spectrum consists of two characteristics, the frequency of the incident light at which the absorption occurs and how much of the radiation is absorbed. The first quantity can be obtained computationally by calculating the harmonic vibrational frequencies of a molecule. As outlined in Chapter 8 density functional methods do a rather good job in that area. To complete the picture, one must also consider the second quantity, i. e., accurate computational predictions of the corresponding intensities have to be provided. [Pg.207]

Table 4 Calculated harmonic vibrational frequencies and infrared intensities of the dihalogens as obtained with different methods applying the aug-cc-pVTZ basis set3 [35]... [Pg.17]

The frequencies of these vibrations generally decrease in the order v > 8 > y > x. Not all vibrations can be observed absorption of an IR photon occurs only if a dipole moment changes during the vibration. The intensity of the IR band is proportional to the change in dipole moment. Thus species with polar bonds (e.g. CO, NO and OH) exhibit strong IR bands, whereas molecules such as H2 and N2 are not infrared active at all. [Pg.43]

A 9 cm-1 upshift of the tangential mode (G band) vibrational frequency as well as a 90% decrease in intensity was observed by applying 1.0 V between an individual nanotube and a silver reference electrode in a dilute sulfuric acid solution. [Pg.507]

The C=C harmonic vibrational frequency is calculated at 1671 cm-1 in free ethylene and is infrared (IR) forbidden. Its IR intensity is therefore expected to remain low in the vinyl series of compounds. The C=C stretch energy is calculated to be 1687 cm-1 in propene and then decline to 1629 4 cm-1 for X = Si - Pb. As in the equilibrium bond distance, there is also a very small counter-trend change in the vibrational frequency going from X = Sn to X = Pb that indicates a slight strengthening of the C=C bond. [Pg.61]


See other pages where Vibrational frequencies intensities is mentioned: [Pg.477]    [Pg.477]    [Pg.1150]    [Pg.1159]    [Pg.1161]    [Pg.2495]    [Pg.331]    [Pg.335]    [Pg.336]    [Pg.16]    [Pg.431]    [Pg.449]    [Pg.226]    [Pg.198]    [Pg.225]    [Pg.239]    [Pg.132]    [Pg.148]    [Pg.360]    [Pg.366]    [Pg.560]    [Pg.253]    [Pg.124]    [Pg.15]    [Pg.697]    [Pg.700]    [Pg.351]    [Pg.491]    [Pg.161]    [Pg.73]   
See also in sourсe #XX -- [ Pg.6 , Pg.332 , Pg.336 , Pg.424 , Pg.484 ]




SEARCH



Vibration frequency

Vibrational frequencies

Vibrational intensity

© 2024 chempedia.info