Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Vibration Vibrational frequency

Vibrational Frequencies. The energies at which molecules vibrate. Vibrational frequencies correspond to the peaks in an infrared and Raman spectrum. [Pg.771]

Raman effect When light of frequency Vo is scattered by molecules of a substance, which have a vibrational frequency of j, the scattered light when analysed spectroscopically has lines of frequency v, where... [Pg.340]

Doerksen R J and Thakkar A J 1999 Structures, vibrational frequencies and polarizabilities of diazaborinines, triazadiborinines, azaboroles and oxazaboroles J. Phys. C/rem. A 103 2141... [Pg.211]

Figure Al.6,8 shows the experimental results of Scherer et al of excitation of I2 using pairs of phase locked pulses. By the use of heterodyne detection, those authors were able to measure just the mterference contribution to the total excited-state fluorescence (i.e. the difference in excited-state population from the two units of population which would be prepared if there were no interference). The basic qualitative dependence on time delay and phase is the same as that predicted by the hannonic model significant interference is observed only at multiples of the excited-state vibrational frequency, and the relative phase of the two pulses detennines whether that interference is constructive or destructive. Figure Al.6,8 shows the experimental results of Scherer et al of excitation of I2 using pairs of phase locked pulses. By the use of heterodyne detection, those authors were able to measure just the mterference contribution to the total excited-state fluorescence (i.e. the difference in excited-state population from the two units of population which would be prepared if there were no interference). The basic qualitative dependence on time delay and phase is the same as that predicted by the hannonic model significant interference is observed only at multiples of the excited-state vibrational frequency, and the relative phase of the two pulses detennines whether that interference is constructive or destructive.
Vibrational frequencies and bond-energy considerations imply that r CNaCr) > (NaCl). Therefore,... [Pg.814]

If the ratio of the products of vibrational frequencies is replaced by equation (A3,12,29) becomes... [Pg.1018]

The time dependence of the displacement coordinate for a mode undergoing hannonic oscillation is given by V = V j cos2tiv /, where is the amplitude of vibration and is the vibrational frequency. Substitution into equation (Bl.2.9) witii use of Euler s half-angle fomuila yields... [Pg.1159]

The first temi results in Rayleigh scattering which is at the same frequency as the exciting radiation. The second temi describes Raman scattering. There will be scattered light at (Vq - and (Vq -i- v ), that is at sum and difference frequencies of the excitation field and the vibrational frequency. Since a. x is about a factor of 10 smaller than a, it is necessary to have a very efficient method for dispersing the scattered light. [Pg.1159]

Light sources can either be broadband, such as a Globar, a Nemst glower, an incandescent wire or mercury arc lamp or they can be tunable, such as a laser or optical parametric oscillator (OPO). In the fomier case, a monocln-omator is needed to achieve spectral resolution. In the case of a tunable light source, the spectral resolution is detemiined by the linewidth of the source itself In either case, the spectral coverage of the light source imposes limits on the vibrational frequencies that can be measured. Of course, limitations on the dispersing element and detector also affect the overall spectral response of the spectrometer. [Pg.1162]

Due to the rather stringent requirements placed on the monochromator, a double or triple monocln-omator is typically employed. Because the vibrational frequencies are only several hundred to several thousand cm and the linewidths are only tens of cm it is necessary to use a monochromator with reasonably high resolution. In addition to linewidth issues, it is necessary to suppress the very intense Rayleigh scattering. If a high resolution spectrum is not needed, however, then it is possible to use narrow-band interference filters to block the excitation line, and a low resolution monocln-omator to collect the spectrum. In fact, this is the approach taken with Fourier transfonn Raman spectrometers. [Pg.1164]

In addition to the dependence of the intennolecular potential energy surface on monomer vibrational level, the red-shifting of the monomer absorption as a fiinction of the number of rare gas atoms in the cluster has been studied. The band origin for the Vppp = 1 -t— 0 vibration in a series of clusters Ar -HF, with 0 < n < 5, was measured and compared to the HF vibrational frequency in an Ar matrix (n = oo). The monomer vibrational frequency Vp p red shifts monotonically, but highly nonlinearly, towards the matrix value as sequential Ar atoms are added. Indeed, roughly 50% of the shift is already accounted for by n = 3. [Pg.1169]

Time-resolved spectroscopy has become an important field from x-rays to the far-IR. Both IR and Raman spectroscopies have been adapted to time-resolved studies. There have been a large number of studies using time-resolved Raman [39], time-resolved resonance Raman [7] and higher order two-dimensional Raman spectroscopy (which can provide coupling infonuation analogous to two-dimensional NMR studies) [40]. Time-resolved IR has probed neutrals and ions in solution [41, 42], gas phase kmetics [42] and vibrational dynamics of molecules chemisorbed and physisorbed to surfaces [44]- Since vibrational frequencies are very sensitive to the chemical enviromnent, pump-probe studies with IR probe pulses allow stmctiiral changes to... [Pg.1172]

I CRS interferogram with a frequency of A = coj + 2c0j - cOq, where cOp is the detected frequency, coj is the narrowband frequency and coj the Raman (vibrational) frequency. Since cOq and coj are known, Wj may be extracted from the experimentally measured RDOs. Furthemiore, the dephasing rate constant, yj, is detemiined from the observed decay rate constant, y, of the I CRS interferogram. Typically for the I CRS signal coq A 0. That is, the RDOs represent strongly down-converted (even to zero... [Pg.1209]

It is also possible to measure microwave spectra of some more strongly bound Van der Waals complexes in a gas cell ratlier tlian a molecular beam. Indeed, tire first microwave studies on molecular clusters were of this type, on carboxylic acid dimers [jd]. The resolution tliat can be achieved is not as high as in a molecular beam, but bulk gas studies have tire advantage tliat vibrational satellites, due to pure rotational transitions in complexes witli intennolecular bending and stretching modes excited, can often be identified. The frequencies of tire vibrational satellites contain infonnation on how the vibrationally averaged stmcture changes in tire excited states, while their intensities allow tire vibrational frequencies to be estimated. [Pg.2442]

Myers A B, Tchenio P and Moerner W E 1994 Vibronic spectroscopy of single molecules exploring electronic-vibrational frequency correlations within an inhomogeneous distribution J. Lumin. 58 161-7... [Pg.2508]

Much of tills chapter concerns ET reactions in solution. However, gas phase ET processes are well known too. See figure C3.2.1. The Tiarjioon mechanism by which halogens oxidize alkali metals is fundamentally an electron transfer reaction [2]. One might guess, from tliis simple reaction, some of tlie stmctural parameters tliat control ET rates relative electron affinities of reactants, reactant separation distance, bond lengtli changes upon oxidation/reduction, vibrational frequencies, etc. [Pg.2972]

The first theoretical handling of the weak R-T combined with the spin-orbit coupling was carried out by Pople [71]. It represents a generalization of the perturbative approaches by Renner and PL-H. The basis functions are assumed as products of (42) with the eigenfunctions of the spin operator conesponding to values E = 1/2. The spin-orbit contribution to the model Hamiltonian was taken in the phenomenological form (16). It was assumed that both interactions are small compared to the bending vibrational frequency and that both the... [Pg.509]

Since the stochastic Langevin force mimics collisions among solvent molecules and the biomolecule (the solute), the characteristic vibrational frequencies of a molecule in vacuum are dampened. In particular, the low-frequency vibrational modes are overdamped, and various correlation functions are smoothed (see Case [35] for a review and further references). The magnitude of such disturbances with respect to Newtonian behavior depends on 7, as can be seen from Fig. 8 showing computed spectral densities of the protein BPTI for three 7 values. Overall, this effect can certainly alter the dynamics of a system, and it remains to study these consequences in connection with biomolecular dynamics. [Pg.234]


See other pages where Vibration Vibrational frequency is mentioned: [Pg.273]    [Pg.180]    [Pg.56]    [Pg.584]    [Pg.714]    [Pg.31]    [Pg.97]    [Pg.247]    [Pg.406]    [Pg.814]    [Pg.1037]    [Pg.1054]    [Pg.1150]    [Pg.1152]    [Pg.1152]    [Pg.1155]    [Pg.1159]    [Pg.1161]    [Pg.1178]    [Pg.1780]    [Pg.2158]    [Pg.2222]    [Pg.2342]    [Pg.2444]    [Pg.2495]    [Pg.2495]    [Pg.2947]    [Pg.3035]    [Pg.3043]    [Pg.141]    [Pg.267]    [Pg.500]    [Pg.511]    [Pg.600]    [Pg.7]   
See also in sourсe #XX -- [ Pg.336 ]




SEARCH



Vibration frequency

Vibrational frequencies

© 2024 chempedia.info