Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Van der Waals calculations

The page http //www.hull.ac.uk/php/chsajb/genera1/vanderwaals.html, at Hull University s Website, includes an interactive page - the van der Waals calculator - to determine values for real and ideal gases, with the van der Waals equation. The site http //antoine.frostburg.edu/chem/senese/javascript/realgas.shtml includes a different calculator with more variables, but is not quite so easy to use. [Pg.540]

A sample data plot is shown in Figure 8. Feed gas is 40% N2 and 60% CH4. A mass balance is calculated for CH4 and N2 for each step in the process as well as for the complete adsorption cycle. The mass balance includes a Van der Waals calculation of the amount of gas stored in column voids and the volume of gas adsorbed on the zeolite. Typically, the independently calculated mass balances for CH4 and N2 were 100 3%. [Pg.228]

In any case, it is clear that when even half the counterions are tightly bound to the surface, the contribution of the loosely bound ions to the free energy of adhesion is greater. (This is still true even if a value of 3 A. is taken as the average separation in the van der Waals calculations). The comparison is perhaps clearer when made on the basis of one ion or ion pair (Table V). [Pg.574]

Utilization of equations of state derived from the Van der Waals model has led to spectacular progress in the accuracy of calculations at medium and high pressure. [Pg.152]

Often the van der Waals attraction is balanced by electric double-layer repulsion. An important example occurs in the flocculation of aqueous colloids. A suspension of charged particles experiences both the double-layer repulsion and dispersion attraction, and the balance between these determines the ease and hence the rate with which particles aggregate. Verwey and Overbeek [44, 45] considered the case of two colloidal spheres and calculated the net potential energy versus distance curves of the type illustrated in Fig. VI-5 for the case of 0 = 25.6 mV (i.e., 0 = k.T/e at 25°C). At low ionic strength, as measured by K (see Section V-2), the double-layer repulsion is overwhelming except at very small separations, but as k is increased, a net attraction at all distances... [Pg.240]

Fig. VI-6. The force between two crossed cylinders coated with mica and carrying adsorbed bilayers of phosphatidylcholine lipids at 22°C. The solid symbols are for 1.2 mM salt while the open circles are for 10.9 roM salt. The solid curves are the DLVO theoretical calculations. The inset shows the effect of the van der Waals force at small separations the Hamaker constant is estimated from this to be 7 1 x 10 erg. In the absence of salt there is no double-layer force and the adhesive force is -1.0 mN/m. (From Ref. 66.)... Fig. VI-6. The force between two crossed cylinders coated with mica and carrying adsorbed bilayers of phosphatidylcholine lipids at 22°C. The solid symbols are for 1.2 mM salt while the open circles are for 10.9 roM salt. The solid curves are the DLVO theoretical calculations. The inset shows the effect of the van der Waals force at small separations the Hamaker constant is estimated from this to be 7 1 x 10 erg. In the absence of salt there is no double-layer force and the adhesive force is -1.0 mN/m. (From Ref. 66.)...
Face-centered cubic crystals of rare gases are a useful model system due to the simplicity of their interactions. Lattice sites are occupied by atoms interacting via a simple van der Waals potential with no orientation effects. The principal problem is to calculate the net energy of interaction across a plane, such as the one indicated by the dotted line in Fig. VII-4. In other words, as was the case with diamond, the surface energy at 0 K is essentially the excess potential energy of the molecules near the surface. [Pg.264]

Small metal clusters are also of interest because of their importance in catalysis. Despite the fact that small clusters should consist of mostly surface atoms, measurement of the photon ionization threshold for Hg clusters suggest that a transition from van der Waals to metallic properties occurs in the range of 20-70 atoms per cluster [88] and near-bulk magnetic properties are expected for Ni, Pd, and Pt clusters of only 13 atoms [89] Theoretical calculations on Sin and other semiconductors predict that the stmcture reflects the bulk lattice for 1000 atoms but the bulk electronic wave functions are not obtained [90]. Bartell and co-workers [91] study beams of molecular clusters with electron dirfraction and molecular dynamics simulations and find new phases not observed in the bulk. Bulk models appear to be valid for their clusters of several thousand atoms (see Section IX-3). [Pg.270]

The charge on a droplet surface produces a repulsive barrier to coalescence into the London-van der Waals primary attractive minimum (see Section VI-4). If the droplet size is appropriate, a secondary minimum exists outside the repulsive barrier as illustrated by DLVO calculations shown in Fig. XIV-6 (see also Refs. 36-38). Here the influence of pH on the repulsive barrier between n-hexadecane drops is shown in Fig. XIV-6a, while the secondary minimum is enlarged in Fig. XIV-6b [39]. The inset to the figures contains t,. the coalescence time. Emulsion particles may flocculate into the secondary minimum without further coalescence. [Pg.508]

Some studies have been made of W/O emulsions the droplets are now aqueous and positively charged [40,41 ]. Albers and Overbeek [40] carried out calculations of the interaction potential not just between two particles or droplets but between one and all nearest neighbors, thus obtaining the variation with particle density or . In their third paper, these authors also estimated the magnitude of the van der Waals long-range attraction from the shear gradient sufficient to detach flocculated droplets (see also Ref. 42). [Pg.508]

N -Fle [, ], Fle-F and Ne-F [Ml- Density-functional theory [ ] is currently unsuitable for the calculation of van der Waals interactions [90], but the situation could change. [Pg.200]

Scheiner S 1997 Hydrogen Bonding A Theoretical Perspective (New York Oxford) A survey of research on hydrogen bonding with emphasis on tiieoretical calculations. 1994 van der Waals molecules Chem. Rev. 94 1721... [Pg.217]

The van der Waals p., p. isothenns, calculated using equation (A2.5.3), are shown in figure A2.5.8. It is innnediately obvious that these are much more nearly antisynnnettic around the critical point than are the conespondingp, F isothenns in figure A2.5.6 (of course, this is mainly due to the finite range of p from 0 to 3). The synnnetry is not exact, however, as a carefiil examination of the figure will show. This choice of variables also satisfies the equal-area condition for coexistent phases here the horizontal tie-line makes the chemical potentials equal and the equal-area constniction makes the pressures equal. [Pg.619]

With these simplifications, and with various values of the as and bs, van Laar (1906-1910) calculated a wide variety of phase diagrams, detennining critical lines, some of which passed continuously from liquid-liquid critical points to liquid-gas critical points. Unfortunately, he could only solve the difficult coupled equations by hand and he restricted his calculations to the geometric mean assumption for a to equation (A2.5.10)). For a variety of reasons, partly due to the eclipse of the van der Waals equation, this extensive work was largely ignored for decades. [Pg.623]

Many of the earlier uncertainties arose from apparent disagreements between the theoretical values and experimental detemiinations of the critical exponents. These were resolved in part by better calculations, but mainly by measurements closer and closer to the critical point. The analysis of earlier measurements assumed incorrectly that the measurements were close enough. (Van der Waals and van Laar were right that one needed to get closer to the critical point, but were wrong in expectmg that the classical exponents would then appear.) As was shown in section A2.5.6.7. there are additional contributions from extended scaling. [Pg.652]

While the phase rule requires tliree components for an unsymmetrical tricritical point, theory can reduce this requirement to two components with a continuous variation of the interaction parameters. Lindli et al (1984) calculated a phase diagram from the van der Waals equation for binary mixtures and found (in accord with figure A2.5.13 that a tricritical point occurred at sufficiently large values of the parameter (a measure of the difference between the two components). [Pg.659]

One can effectively reduce the tliree components to two with quasibinary mixtures in which the second component is a mixture of very similar higher hydrocarbons. Figure A2.5.31 shows a phase diagram [40] calculated from a generalized van der Waals equation for mixtures of ethane n = 2) with nomial hydrocarbons of different carbon number n.2 (treated as continuous). It is evident that, for some values of the parameter n, those to the left of the tricritical point at = 16.48, all that will be observed with increasing... [Pg.659]

Pegg I L, Knobler C M and Scott R L 1990 Tricritical phenomena in quasibinary mixtures. VIII. Calculations from the van der Waals equation for binary mixtures J. Chem. Phys. 92 5442-53... [Pg.663]

Atomistically detailed models account for all atoms. The force field contains additive contributions specified in tenns of bond lengtlis, bond angles, torsional angles and possible crosstenns. It also includes non-bonded contributions as tire sum of van der Waals interactions, often described by Lennard-Jones potentials, and Coulomb interactions. Atomistic simulations are successfully used to predict tire transport properties of small molecules in glassy polymers, to calculate elastic moduli and to study plastic defonnation and local motion in quasi-static simulations [fy7, ( ]. The atomistic models are also useful to interiDret scattering data [fyl] and NMR measurements [70] in tenns of local order. [Pg.2538]

N is the number of point charges within the molecule and Sq is the dielectric permittivity of the vacuum. This form is used especially in force fields like AMBER and CHARMM for proteins. As already mentioned, Coulombic 1,4-non-bonded interactions interfere with 1,4-torsional potentials and are therefore scaled (e.g., by 1 1.2 in AMBER). Please be aware that Coulombic interactions, unlike the bonded contributions to the PEF presented above, are not limited to a single molecule. If the system under consideration contains more than one molecule (like a peptide in a box of water), non-bonded interactions have to be calculated between the molecules, too. This principle also holds for the non-bonded van der Waals interactions, which are discussed in Section 7.2.3.6. [Pg.345]

Figure 7-12. Plot of the van der Waals interaction energy according to the Lennard-Jones potential given in Eq. (27) (Sj, = 2.0 kcal mol , / (, = 1.5 A). The calculated collision diameter tr is 1.34 A. Figure 7-12. Plot of the van der Waals interaction energy according to the Lennard-Jones potential given in Eq. (27) (Sj, = 2.0 kcal mol , / (, = 1.5 A). The calculated collision diameter tr is 1.34 A.

See other pages where Van der Waals calculations is mentioned: [Pg.743]    [Pg.109]    [Pg.72]    [Pg.100]    [Pg.94]    [Pg.534]    [Pg.13]    [Pg.190]    [Pg.197]    [Pg.70]    [Pg.227]    [Pg.241]    [Pg.1936]    [Pg.245]    [Pg.743]    [Pg.109]    [Pg.72]    [Pg.100]    [Pg.94]    [Pg.534]    [Pg.13]    [Pg.190]    [Pg.197]    [Pg.70]    [Pg.227]    [Pg.241]    [Pg.1936]    [Pg.245]    [Pg.61]    [Pg.200]    [Pg.211]    [Pg.503]    [Pg.624]    [Pg.630]    [Pg.1710]    [Pg.1874]    [Pg.30]    [Pg.70]    [Pg.70]    [Pg.126]    [Pg.347]    [Pg.352]    [Pg.361]   
See also in sourсe #XX -- [ Pg.56 ]




SEARCH



© 2024 chempedia.info