Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Valence orbital model

An X-ray atomic orbital (XAO) [77] method has also been adopted to refine electronic states directly. The method is applicable mainly to analyse the electron-density distribution in ionic solids of transition or rare earth metals, given that it is based on an atomic orbital assumption, neglecting molecular orbitals. The expansion coefficients of each atomic orbital are calculated with a perturbation theory and the coefficients of each orbital are refined to fit the observed structure factors keeping the orthonormal relationships among them. This model is somewhat similar to the valence orbital model (VOM), earlier introduced by Figgis et al. [78] to study transition metal complexes, within the Ligand field theory approach. The VOM could be applied in such complexes, within the assumption that the metal and the... [Pg.55]

An extended Huckel calculation is a simple means for modeling the valence orbitals based on the orbital overlaps and experimental electron affinities and ionization potentials. In some of the physics literature, this is referred to as a tight binding calculation. Orbital overlaps can be obtained from a simplified single STO representation based on the atomic radius. The advantage of extended Huckel calculations over Huckel calculations is that they model all the valence orbitals. [Pg.33]

The complete neglect of differential overlap (CNDO) method is the simplest of the neglect of differential overlap (NDO) methods. This method models valence orbitals only using a minimal basis set of Slater type orbitals. The CNDO method has proven useful for some hydrocarbon results but little else. CNDO is still sometimes used to generate the initial guess for ah initio calculations on hydrocarbons. [Pg.34]

We 11 expand our picture of bonding by introducing two approaches that grew out of the idea that electrons can be described as waves—the valence bond and molecular orbital models In particular one aspect of the valence bond model called orbital hybridization, will be emphasized... [Pg.57]

We 11 begin our discussion of hydrocarbons by introducing two additional theories of covalent bonding the valence bond model and the molecular orbital model... [Pg.58]

Valence bond and molecular orbital theory both incorporate the wave description of an atom s electrons into this picture of H2 but m somewhat different ways Both assume that electron waves behave like more familiar waves such as sound and light waves One important property of waves is called interference m physics Constructive interference occurs when two waves combine so as to reinforce each other (m phase) destructive interference occurs when they oppose each other (out of phase) (Figure 2 2) Recall from Section 1 1 that electron waves m atoms are characterized by their wave function which is the same as an orbital For an electron m the most stable state of a hydrogen atom for example this state is defined by the Is wave function and is often called the Is orbital The valence bond model bases the connection between two atoms on the overlap between half filled orbifals of fhe fwo afoms The molecular orbital model assembles a sef of molecular orbifals by combining fhe afomic orbifals of all of fhe atoms m fhe molecule... [Pg.59]

The orbital hybridization model (which is a type of valence bond model)... [Pg.93]

The Extended Hiickel model treats all valence electrons within the spirit of the TT-electron model. Each molecular orbital is written as an LCAO expansion of the valence orbitals, which can be thought of as being Slater-type orbitals (to look ahead to Chapter 9). Slater-type orbitals are very similar to hydrogenic ones except that they do not have radial nodes. Once again we can understand the model best by considering the HF-LCAO equations... [Pg.130]

We saw in the last chapter how covalent bonds between atoms are described, and we looked at the valence bond model, which uses hybrid orbitals to account for the observed shapes of organic molecules. Before going on to a systematic study of organic chemistry, however, we still need to review a few fundamental topics. In particular, we need to look more closely at how electrons are distributed in covalent bonds and at some of the consequences that arise when the electrons in a bond are not shared equally between atoms. [Pg.35]

In the 1930s a theoretical treatment of the covalent bond was developed by, among others, Linus Pauling (1901-1994), then at the California Institute of Technology. The atomic orbital or valence bond model won him the Nobel Prize in chemistry in 1954. Eight years later, Pauling won the Nobel Peace Prize for his efforts to stop nuclear testing. [Pg.185]

As pointed out in Chapter 7, the atomic orbital (valence bond) model regards benzene as a resonance hybrid of the two structures... [Pg.588]

Valence bond model Model of the electronic structure of molecules in which electrons are assigned to orbitals, pure or hybridized, of individual atoms, 185-186... [Pg.698]

In molecular orbital theory, electrons occupy orbitals called molecular orbitals that spread throughout the entire molecule. In other words, whereas in the Lewis and valence-bond models of molecular structure the electrons are localized on atoms or between pairs of atoms, in molecular orbital theory all valence electrons are delocalized over the whole molecule, not confined to individual bonds. [Pg.240]

Follow the four-step procedure for the composite model of bonding. Use localized bonds and hybrid orbitals to describe the bonding framework and the inner atom lone pairs. Next, analyze the system, paying particular attention to resonance structures or conjugated double bonds. Finally, make sure the bonding inventory accounts for all the valence electrons and all the valence orbitals. [Pg.715]

For ionic compounds, crystal field theory is generally regarded a sufficiently good model for qualitative estimates. Covalency is neglected in this approach, only metal d-orbitals are considered which can be populated with zero, one or two electrons. To evaluate (Vzz)vai 4t the Mdssbauer nucleus, one may simply take the expectation value of the expression — e(3cos 0 — for every electron in a valence orbital i/, of the Mdssbauer atom and sum up,... [Pg.98]

Both Fe(ll)(TPP) and Fe(II)(OEP) have positive electric quadrupole splitting without significant temperature dependence which, however, cannot be satisfactorily explained within the crystal field model [117]. Spin-restricted and spin-unrestricted Xoi multiple scattering calculations revealed large asymmetry in the population of the valence orbitals and appreciable 4p contributions to the EFG [153] which then was further specified by ab initio and DFT calculations [154,155]. [Pg.427]

When the electron configurations of the elements were worked out, it became clear that the valence electrons of the period 2 elements must be accommodated in just four orbitals, the 2s and the three 2p orbitals. In the localized orbital model it is assumed that each bond can be described by a localized orbital formed by the overlap of one orbital on each of the bonded atoms. According to this model, therefore, a period 2 element can form bonds with at most four ligands so that electron configurations appeared to provide a justification for the octet rule. [Pg.226]

The concept of a bond has precise meaning only in terms of a given model or theory. In the Lewis model a bond is defined as a shared electron pair. In the valence bond model it is defined as a bonding orbital formed by the overlap of two atomic orbitals. In the AIM theory a bonding interaction is one in which the atoms are connected by a bond path and share an interatomic surface. [Pg.278]

We shall briefly discuss the electrical properties of the metal oxides. Thermal conductivity, electrical conductivity, the Seebeck effect, and the Hall effect are some of the electron transport properties of solids that characterize the nature of the charge carriers. On the basis of electrical properties, the solid materials may be classified into metals, semiconductors, and insulators as shown in Figure 2.1. The range of electronic structures of oxides is very wide and hence they can be classified into two categories, nontransition metal oxides and transition metal oxides. In nontransition metal oxides, the cation valence orbitals are of s or p type, whereas the cation valence orbitals are of d type in transition metal oxides. A useful starting point in describing the structures of the metal oxides is the ionic model.5 Ionic crystals are formed between highly electropositive... [Pg.41]


See other pages where Valence orbital model is mentioned: [Pg.58]    [Pg.6]    [Pg.58]    [Pg.171]    [Pg.233]    [Pg.234]    [Pg.78]    [Pg.659]    [Pg.662]    [Pg.319]    [Pg.273]    [Pg.167]    [Pg.170]    [Pg.174]    [Pg.435]    [Pg.39]    [Pg.1084]    [Pg.225]    [Pg.277]    [Pg.26]    [Pg.592]    [Pg.77]    [Pg.447]    [Pg.460]    [Pg.113]    [Pg.120]    [Pg.253]   
See also in sourсe #XX -- [ Pg.55 ]




SEARCH



Orbital model

Valence model

Valence orbital

Valence orbitals

Valency orbitals

© 2024 chempedia.info