Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Multiple valence

Jaffe HH (1954) Studies in molecular orbital theory of valence multiple bonds involving d-orbitals. J Phys Chem 58 185-190... [Pg.145]

The concept of connection tablc.s, a.s shown. so far, cannot represent adequately quite a number of molecular structures. Basically, a connection table represents only a single valence bond structure. Thus, any chemical species that cannot he described adequately by a single valence bond (VB) structure with single or multiple bonds between two atom.s is not handled accurately. [Pg.63]

Th e ability to perform m oleciilar orbital (MO ) calculation s on m et-als is extremely useliil because molecular mechanics methods are gen erally unable to treat m etals. This is becau se m etals h ave a wide range of valences, oxidation states, spin multiplicities, and have 1111 usual bonding situations (e.g.. d%-p% back bonding). In addition. the 11 on direction al n at are o ( m etallic hon din g is less am en a-ble to a ball and spring interpretation. [Pg.151]

One of the cornerstones of the chemistry of carbon compounds (organic chemistry) is Kekule s concept, proposed in 1858, of the tetra-valence of carbon. It was independently proposed in the same year by Couper who, however, got little recognition (vide infra). Kekule realized that carbon can bind at the same time to not more than four other atoms or groups. It can, however, at the same time use one or more of its valences to form bonds to another carbon atom. In this way carbon can form chains or rings, as well as multiple-bonded compounds. [Pg.153]

When writing a Lewis structure we restrict a molecule s electrons to certain well defined locations either linking two atoms by a covalent bond or as unshared electrons on a sm gle atom Sometimes more than one Lewis structure can be written for a molecule espe cially those that contain multiple bonds An example often cited m introductory chem istry courses is ozone (O3) Ozone occurs naturally m large quantities m the upper atmosphere where it screens the surface of the earth from much of the sun s ultraviolet rays Were it not for this ozone layer most forms of surface life on earth would be dam aged or even destroyed by the rays of the sun The following Lewis structure for ozone satisfies fhe ocfef rule all fhree oxygens have eighf elecfrons m fheir valence shell... [Pg.24]

HyperChem quantum mechanics calculations must start with the number of electrons (N) and how many of them have alpha spins (the remaining electrons have beta spins). HyperChem obtains this information from the charge and spin multiplicity that you specify in the Semi-empirical Options dialog box or Ab Initio Options dialog box. N is then computed by counting the electrons (valence electrons in semi-empirical methods and all electrons in fll) mitio method) associated with each (assumed neutral) atom and... [Pg.44]

On the assumption that the pairs of electrons in the valency shell of a bonded atom in a molecule are arranged in a definite way which depends on the number of electron pairs (coordination number), the geometrical arrangement or shape of molecules may be predicted. A multiple bond is regarded as equivalent to a single bond as far as molecular shape is concerned. [Pg.331]

Addition Reactions. The addition of nucleophiles to quinones is often an acid-catalyzed, Michael-type reductive process (7,43,44). The addition of benzenethiol to 1,4-benzoquinone (2) was studied by A. Michael for a better understanding of valence in organic chemistry (45). The presence of the reduced product thiophenyUiydroquinone (52), the cross-oxidation product 2-thiophenyl-1,4-benzoquinone [18232-03-6] (53), and multiple-addition products such as 2,5-(bis(thiophenyl)-l,4-benzoquinone [17058-53-6] (54) and 2,6-bis(thiophenyl)-l,4-benzoquinone [121194-11-4] (55), is typical ofmany such transformations. [Pg.409]

The ionic mobility is the average velocity imparted to the species under the action of a unit force (per mole), i is the stream velocity, cm/s. In the present case, the electrical force is given by the product of the electric field V in V/cm and the charge per mole, where S" is the Faraday constant in C/g equivalent and Z is the valence of the ith species. Multiplication of this force by the mobihty and the concentration C [(g mol)/cm ] yields the contribution of migration to the flux of the ith species. [Pg.2006]

At one time it was felt that it would be possible to produce silicon analogues of the multiplicity of carbon compounds which form the basis of organic chemistry. Because of the valency difference and the electropositive nature of the element this has long been known not to be the case. It is not even possible to prepare silanes higher than hexasilane because of the inherent instability of the silicon-silicon bond in the higher silanes. [Pg.816]

It should be noted that a comprehensive ELNES study is possible only by comparing experimentally observed structures with those calculated [2.210-2.212]. This is an extra field of investigation and different procedures based on molecular orbital approaches [2.214—2.216], multiple-scattering theory [2.217, 2.218], or band structure calculations [2.219, 2.220] can be used to compute the densities of electronic states in the valence and conduction bands. [Pg.63]

Iodomethylzinc iodide is often refened to as a carbenoid, meaning that it resembles a carbene in its chemical reactions. Caibenes are neutral molecules in which one of the caibon atoms has six valence electrons. Such caibons aie divalent they are directly bonded to only two other atoms and have no multiple bonds. Iodomethylzinc iodide reacts as if it were a source of the caibene H—C—H. [Pg.606]

Even larger basis sets are now practical for many systems. Such basis sets add multiple polarization functions per atom to the triple zeta basis set. For example, the 6-31G(2d) basis set adds two d functions per heavy atom instead of just one, while the 6-311++G(3df,3pd) basis set contains three sets of valence region functions, diffuse functions on both heavy atoms and hydrogens, and multiple polarization functions 3 d functions and 1 f function on heavy atoms and 3 p functions and 1 d function on hydrogen atoms. Such basis sets are useful for describing the interactions between... [Pg.100]

Twice the amount of electricity is required compared with the discharge reaction at the negative electrode according to Eq. (18), since corrosion involves four valences, which means AF = 107.21 Ah per multiple of Eq. (31). Consequently, for the corrosion reaction according to Eq. (31) the equivalent values are ... [Pg.170]

The Lewis structure of a polyatomic species is obtained by using all the valence electrons to complete the octets (or duplets) of the atoms present by forming single or multiple bonds and leaving some electrons as lone pairs. [Pg.193]

The radius of an atom helps to determine how many other atoms can bond to it. The small radii of Period 2 atoms, for instance, are largely responsible for the differences between their properties and those of their congeners. As described in Section 2.10, one reason that small atoms typically have low valences is that so few other atoms can pack around them. Nitrogen, for instance, never forms penta-halides, but phosphorus does. With few exceptions, only Period 2 elements form multiple bonds with themselves or other elements in the same period, because only they are small enough for their p-orbitals to have substantial tt overlap (Fig. 14.6). [Pg.703]


See other pages where Multiple valence is mentioned: [Pg.89]    [Pg.172]    [Pg.228]    [Pg.160]    [Pg.214]    [Pg.87]    [Pg.503]    [Pg.167]    [Pg.168]    [Pg.348]    [Pg.89]    [Pg.172]    [Pg.228]    [Pg.160]    [Pg.214]    [Pg.87]    [Pg.503]    [Pg.167]    [Pg.168]    [Pg.348]    [Pg.2222]    [Pg.308]    [Pg.1144]    [Pg.339]    [Pg.606]    [Pg.160]    [Pg.358]    [Pg.333]    [Pg.359]    [Pg.364]    [Pg.331]    [Pg.60]    [Pg.24]    [Pg.301]    [Pg.846]    [Pg.24]    [Pg.384]    [Pg.150]    [Pg.151]    [Pg.553]    [Pg.179]   
See also in sourсe #XX -- [ Pg.6 ]




SEARCH



Multiple bonds in polyatomic molecules, valence bond

Multiple bonds valence-bond descriptions

Multiple valency

Polyatomic molecules multiple bonding in, valence bond

Single-, Multiple-, and Split-Valence

Valence bond theory Bonding multiple bonds

Valence bond theory multiple bonding in polyatomic molecules

Valence multiple zeta

Valence shell electron-pair repulsion multiple bonds

Valence states, multiple

Valence-shell electron-pair multiple bonds

Valence-shell electron-pair repulsion molecules with multiple central atoms

Valencies and Multiplicities

© 2024 chempedia.info