Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Uridine, pyrimidine

Bei der Photoreduktion von Uridin wird als Nebenprodukt durch Photohydratation 6-Hydroxy-2,4-dioxo-I-(fi-D-ribofuranosyl)-hexahydro-pyrimidin gebildet. Die Photoreduktion von Thymidin mit Natriumboranat ver-lauft langsamer und kann nicht vom zweiten, Licht-unabhangigen Schritt abgegrenzt werden2. [Pg.140]

After silylation-amination in situ transsilylation (cf Section 2.3) of the intermediate persilylated cytidines 5 with excess boiling methanol for 3-5 h gives the desired free cytidines 6 and methoxytrimethylsilane 13a (b.p. 57°C) [13]. Thus protection of the alcohohc hydroxyl groups of the ribose moiety and silylation-activation of the 4-position in the pyrimidine moiety in persilylated uridine 3, and the concomitant amination of 3, aU in one reaction step, to 5 is followed finally by in situ transsilylation (cf. Section 2.3) with excess boihng methanol in one reaction vessel. [Pg.3]

While mammahan cells reutilize few free pyrimidines, salvage reactions convert the ribonucleosides uridine and cytidine and the deoxyribonucleosides thymidine and deoxycytidine to their respective nucleotides. ATP-dependent phosphoryltransferases (kinases) catalyze the phosphorylation of the nucleoside diphosphates 2 "-de-oxycytidine, 2 -deoxyguanosine, and 2 -deoxyadenosine to their corresponding nucleoside triphosphates. In addition, orotate phosphoribosyltransferase (reaction 5, Figure 34-7), an enzyme of pyrimidine nucleotide synthesis, salvages orotic acid by converting it to orotidine monophosphate (OMP). [Pg.296]

Regular pyrimidines are less effective ligands for Ni11 ions. They may use, inter alia, their C=0 donor to yield monodentate coordination.1835 Insertion of a sulfur atom into a pyrimidine moiety increases considerably its binding ability.1836 Thiolation of uridine at C(2) or C(4) results in formation of a quite effective S,N3 four-membered chelate in the complexes with Ni11. Thiolation of purine at C(6) increases the stability constant by 3.5 orders of magnitude. [Pg.421]

The increase in erythrocyte destruction may be due in part to inhibition by lead of pyrimidine-5 -nucleotidase, which results in an accumulation of pyrimidine nucleotides (cytidine and uridine phosphates) in the erythrocyte or reticulocyte. This enzyme inhibition and nucleotide accumulation affect erythrocyte membrane stability and survival by alteration of cellular energetic (Angle et al. 1982 EPA 1986a). Formation of the heme-containing cytochromes is inhibited in animals treated intraperitoneally or orally... [Pg.264]

If it is desired to isolate only the pyrimidine nucleosides, hydrolysis of the nucleic acid may be carried out in acid medium.6 This process, however, entails extensive deamination of cytidine to uridine. The pyrimidine... [Pg.286]

In the U.S.A. various pyridazine analogues of naturally occurring pyrimidine nucleosides have been prepared [299, 300] for a review on this subject see [13]. Within this series, 3-deaza-6-azauridine (86) has been found to inhibit the growth of L-1210 mouse leukaemic cells with an ID50 value of a 7 X 10 5 M [299, 301], The inhibitory effect of this uridine isoster might be due to interference in pyrimidine biosynthesis [302],... [Pg.23]

Alkaline hydrolysis splits the nucleotide into its phosphate and sugar-base residues. The sugar-base is known as a nucleoside. The nucleosides are named according to the type of base present. If a purine base is present it will end -osine, e.g. adenosine, while if a pyrimidine is present the name will end -idine, e.g. uridine. [Pg.444]

If polyribonucleotides are treated simultaneously with methoxylamine and bisulphite, cytidine residues are converted into 5,6-dihydro-7V4-methoxycytidine-6-sulphonate,154 and uridine into 5,6-dihydrouridine-6-sulphonate.155 Treatment with dilute ammonia regenerates the uridine residues, leaving the dihydrocytidine derivatives unaffected. When only the cytidine residues have been derivatized, pancreatic ribonuclease becomes uridyl ribonuclease, since it is unable to cleave the chain on the 3 -side of the modified cytidine.154 This allows the isolation of blocks of modified cytidine residues. T2 ribonuclease may also be used. Alternatively, a ribonuclease from Physarum polycephalum has been found to hydrolyse CpX links very slowly, allowing the isolation of cytidine blocks.156 If both uridine and cytidine residues are modified, T2 ribonuclease acts as puryl ribonuclease, allowing the isolation of cumulative blocks of pyrimidines.155 This ability to alter the specificity of nuclease cleavage is a useful tool in sequence analysis. [Pg.173]

Figure 20.9 The positions in the pathway for de novo pyrimidine nucleotide synthesis where GLUCOSE provides the ribose molecule and GLUTAMINE provides nitrogen atoms. Glucose forms ribose 5-phosphate, via the pentose phosphate pathway (see chapter 6), which enters the pathway, after phosphorylation, as 5-phospho-ribosyl 1-pyrophosphate. Glutamine provides the nitrogen atom to synthesise carbamoylphos-phate (with formation of glutamate), and also to form cytidine triphosphate (CTP) from uridine triphosphate (UTP), catalysed by the enzyme CTP synthetase. It is the amide nitrogen of glutamine that is the nitrogen atom that is provided in these reactions. Figure 20.9 The positions in the pathway for de novo pyrimidine nucleotide synthesis where GLUCOSE provides the ribose molecule and GLUTAMINE provides nitrogen atoms. Glucose forms ribose 5-phosphate, via the pentose phosphate pathway (see chapter 6), which enters the pathway, after phosphorylation, as 5-phospho-ribosyl 1-pyrophosphate. Glutamine provides the nitrogen atom to synthesise carbamoylphos-phate (with formation of glutamate), and also to form cytidine triphosphate (CTP) from uridine triphosphate (UTP), catalysed by the enzyme CTP synthetase. It is the amide nitrogen of glutamine that is the nitrogen atom that is provided in these reactions.
The purine and pyrimidine bases can be converted to then-respective nncleotides by reaction with 5-phosphoribosyl 1-pyrophosphate. Since these bases are not very soluble, they are not transported in the blood, so that the reactions are only of qnantitative significance in the intestine, where the bases are produced by degradation of nucleotides. In contrast, in some cells, nucleosides are converted back to nucleotides by the activity of kinase enzymes. In particular, adenosine is converted to AMP, by the action of adenosine kinase, and uridine is converted to UMP by a uridine kinase... [Pg.459]

Carbamoyl phosphate synthetase formation in liver taken from tadpoles treated with thyroxine is enhanced by the addition of orotic acid, uracil or uridine (cytosine and adenosine had no effect). The synthesis of this enzyme is not affected by these pyrimidines in untreated animals. This indicates that there is a relative pyrimidine deficiency during thyroxine-induced metamorphosis [140]. [Pg.289]


See other pages where Uridine, pyrimidine is mentioned: [Pg.127]    [Pg.146]    [Pg.331]    [Pg.375]    [Pg.154]    [Pg.140]    [Pg.394]    [Pg.56]    [Pg.244]    [Pg.176]    [Pg.233]    [Pg.198]    [Pg.94]    [Pg.134]    [Pg.2]    [Pg.138]    [Pg.114]    [Pg.254]    [Pg.502]    [Pg.290]    [Pg.291]    [Pg.293]    [Pg.323]    [Pg.324]    [Pg.70]    [Pg.187]    [Pg.86]    [Pg.44]    [Pg.111]    [Pg.492]    [Pg.139]    [Pg.165]    [Pg.688]    [Pg.339]    [Pg.454]    [Pg.455]    [Pg.114]    [Pg.287]   


SEARCH



Uridine monophosphate pyrimidine synthesis

Uridine triphosphate pyrimidine synthesis

Uridine, pyrimidine metabolism

© 2024 chempedia.info