Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Uranium-thorium series isotopes actinium

ISOTOPES There are 41 isotopes of polonium. They range from Po-188 to Po-219. All of them are radioactive with half-lives ranging from a few milliseconds to 102 years, the latter for its most stable isotope Po-209. Polonium is involved with several radioactive decay series, including the actinium series, Po-211 and Po-215 the thorium series, Po-212 and Po-216 and the uranium decay series, Po-210, Po-214, and Po-218. [Pg.241]

One of the most important observations of atoms is the set of relationships between elements that belong to one of the series of radioactive decays. The parent elements of uranium, thorium and actinium decay through many intermediates to the stable element lead. The Nobel Prize in Chemistry for 1921 was awarded in 1922 to Frederick Soddy for his complete characterization of these processes. The story is beautifully told in his Nobel Lecture entitled The origins of the conception of isotopes (25). [Pg.96]

The great variety of radionuclides present in thorium and uranium ores are listed in Tables 4.1, 4.2 and 4.3. Whereas thorium has only one isotope with a very long half-life (- Th), uranium has two and giving ri.se to one decay scries for Th and two for U. In order to distinguish the two decay series of U, they were named after long-lived members of practical importance the uranium-radium series and the actinium series. The uranium-radium series includes the most important radium isotope ( Ra) and the actinium scries the most important actinium isotope ( Ac),... [Pg.29]

CAS 7439-92-1. Pb. Metallic element of atomic number 82, group IVA of the periodic table, aw 207.2, valences = 2,4, four stable isotopes. The isotopes are the end products of the disintegration of three series of natural radioactive elements uranium (206), thorium (208), and actinium (207). [Pg.743]

The main source of terrestrial radiation is long-living isotopes of the uranium-radium series the thorium series ( Th) and the actinium series... [Pg.28]

When an element has more than one radioisotope, determinations and data analysis are generally more complex because the isotopes may differ in half-life, especially when a series is involved, e.g., radium, thorium, polonium, radon, actinium, protactinium, and uranium. One possibility is to make measurements after the decay of the short-lived radionuclides, but this may require long waiting times. In favorable cases, it is more convenient to measure the activity of decay products (e.g., radon, thoron ( Rn), actinon ( Rn)), or correct the measurements of the short-lived radioisotopes after determination of the isotopic composition. [Pg.4120]

The chain of radioactive decay that begins with continues through a number of steps of a and j8 emission until it eventually terminates with a stable isotope of lead— 82 1. The entire scheme is outlin in Figure 25-2. All naturally occurring radioactive nuclides of high atomic number belong to one of three radioactive decay series the uranium series just described, the thorium series, or the actinium series. (The actinium series actually begins with uranium-235, which was once called actino-uranium.)... [Pg.1175]

Various radium isotopes are derived through a series of radioactive decay processes. For example, Ra-223 is derived from the decay of actinium. Ra-228 and Ra-224 are the result of the series of thorium decays, and Ra-226 is a result of the decay of the uranium series. [Pg.81]

The chemistry of neptunium (jjNp) is somewhat similar to that of uranium (gjU) and plutonium (g4Pu), which immediately precede and follow it in the actinide series on the periodic table. The discovery of neptunium provided a solution to a puzzle as to the missing decay products of the thorium decay series, in which all the elements have mass numbers evenly divisible by four the elements in the uranium series have mass numbers divisible by four with a remainder of two. The actinium series elements have mass numbers divisible by four with a remainder of three. It was not until the neptunium series was discovered that a decay series with a mass number divisible by four and a remainder of one was found. The neptunium decay series proceeds as follows, starting with the isotope plutonium-241 Pu-24l—> Am-24l Np-237 Pa-233 U-233 Th-229 Ra-225 Ac-225 Fr-221 At-217 Bi-213 Ti-209 Pb-209 Bi-209. [Pg.316]

I he atomic wcighi varies because of natural variations in the isotopic composition of the element, caused by the various isotopes having different origins - I h is the end product of the thorium decay scries, while Ph and " Pb arise Irom uranium as end products of the actinium and radium series respectively. Lead-204 has no existing natural radioactive precursors. Electronic configuration l.v 2s lfc22/j"3v 3//,3i/l"4v- 4/, 4l/" 4/ IJ5v- 5/ "5t/l"bv />-. Ionic radius Pb I.IX A. Pb 1 0.7(1 A. Metallic radius 1.7502 A. Covalent radius (ip i 1.44 A. First ionization potential 7.415 cV second. 14.17 eV. Oxidation... [Pg.922]

Many of the radioactive isotopes that occur in nature are related to each other. For example, when uranium-235 breaks apart, it forms a new isotope, thorium-231. But thorium-231 is radioactive also. It breaks apart to form protactinium-231. And protactinium-231 is also radioactive. It breaks apart to form actinium-227. This series goes on for 14 more steps until a stable isotope is finally formed. [Pg.474]

The terrestrial occurrence of Ac, Pa, U, and Th is due to the half-lives of the isotopes 235U, 238U and 232Th which are sufficiently long to have enabled the species to persist since genesis. They are the sources of actinium and protactinium formed in the decay series and found in uranium and thorium ores. The half-lives of the most stable isotopes of the trans-uranium elements are such that any primordial amounts of these elements appear to have disappeared long ago. However, neptunium and plutonium have been isolated in traces from uranium13 minerals in which they are formed continuously by neutron reactions such as... [Pg.1079]


See other pages where Uranium-thorium series isotopes actinium is mentioned: [Pg.85]    [Pg.34]    [Pg.54]    [Pg.57]    [Pg.43]    [Pg.99]    [Pg.453]    [Pg.84]    [Pg.330]    [Pg.670]    [Pg.662]    [Pg.6]    [Pg.714]    [Pg.689]    [Pg.805]    [Pg.1202]    [Pg.650]    [Pg.744]    [Pg.720]    [Pg.708]    [Pg.742]    [Pg.662]    [Pg.173]    [Pg.154]    [Pg.305]    [Pg.11]    [Pg.1331]    [Pg.87]    [Pg.22]    [Pg.178]    [Pg.141]    [Pg.464]    [Pg.113]    [Pg.664]    [Pg.656]    [Pg.708]    [Pg.5]    [Pg.5]    [Pg.818]   
See also in sourсe #XX -- [ Pg.222 ]




SEARCH



Actinium

Actinium series

Isotopes thorium

Isotopes uranium

Thorium series

Uranium series

Uranium-actinium series

© 2024 chempedia.info