Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Uranium aqueous oxidation-reduction

Newton, T. W and F. B. Baker Aqueous Oxidation-Reduction Reactions of Uranium, Neptunium, Plutonium, and Americium. In if. F. Gould (Ed.), Lanthanide/Actinide Chemistry, Advances in Chemistry Series, Vol. 71, p. 268. Washington American Chemical Society 1967. [Pg.123]

Aqueous Oxidation-Reduction Reactions of Uranium, Neptunium, Plutonium, and Americium... [Pg.268]

Uranium has die four oxidation states, (III), (IV), (V), and (VI) the ions in aqueous solution are usually represented as LI +, U4+, U02+, and U02i+. The oxidation-reduction scheme, on tlie hydrogen scale (in... [Pg.1647]

The oxidation-reduction behavior of plutonium is described by the redox potentials shown in Table I. (For the purposes of this paper, the unstable and environmentally unimportant heptavalent oxidation state will be ignored.) These values are of a high degree of accuracy, but are valid only for the media in which they are measured. In more strongly complexing media, the potentials will change. In weakly complexing media such as 1 M HClOq, all of the couples have potentials very nearly the same as a result, ionic plutonium in such solutions tends to disproportionate. Plutonium is unique in its ability to exist in all four oxidation states simultaneously in the same solution. Its behavior is in contrast to that of uranium, which is commonly present in aqueous media as the uranyl(VI) ion, and the transplutonium actinide elements, which normally occur in solution as trlvalent... [Pg.321]

Ions of different valences of a metal behave like different elements with respect to extract-ability. The difference between Ce and Ce in Table 4.2 is one example. Another is afforded by Pu and Pu 02, which are readily extracted by TBP in kerosene, whereas Pu has a very low distribution coefficient [G31. Consequently, by adjusting the oxidation-reduction potential of the aqueous phase to control the proportion of an element in different valence states, it is possible to vary its distribution coefficient between wide limits. This is the mearts by which plutonium is stripped from aqueous solutions containing plutonium and uranium in sections C and D of Fig. 4.5 illustrating the Purex process. Addition of a reducing... [Pg.165]

Extensive treatments of oxidation-reduction kinetics of the aqueous ions of uranium through americium are found in Chapters 5-8, in the critical monograph of Newton [264], and in a recent review [273]. [Pg.663]

Finely-ground monazite is treated with a 45% NaOH solution and heated at 138°C to open the ore. This converts thorium, uranium, and the rare earths to their water-insoluble oxides. The insoluble residues are filtered, dissolved in 37% HCl, and heated at 80°C. The oxides are converted into their soluble chlorides. The pH of the solution is adjusted to 5.8 with NaOH. Thorium and uranium are precipitated along with small quantities of rare earths. The precipitate is washed and dissolved in concentrated nitric acid. Thorium and uranium are separated from the rare earths by solvent extraction using an aqueous solution of tributyl phosphate. The two metals are separated from the organic phase by fractional crystallization or reduction. [Pg.929]

The Purex process, ie, plutonium uranium reduction extraction, employs an organic phase consisting of 30 wt % TBP dissolved in a kerosene-type diluent. Purification and separation of U and Pu is achieved because of the extractability of U02+2 and Pu(IV) nitrates by TBP and the relative inextractability of Pu(III) and most fission product nitrates. Plutonium nitrate and U02(N03)2 are extracted into the organic phase by the formation of compounds, eg, Pu(N03)4 -2TBP. The plutonium is reduced to Pu(III) by treatment with ferrous sulfamate, hydrazine, or hydroxylamine and is transferred to the aqueous phase U remains in the organic phase. Further purification is achieved by oxidation of Pu(III) to Pu(IV) and re-extraction with TBP. The plutonium is transferred to an aqueous product. Plutonium recovery from the Purex process is ca 99.9 wt % (128). Decontamination factors are 106 — 10s (97,126,129). A flow sheet of the Purex process is shown in Figure 7. [Pg.201]

At unit activities of the oxidant and reductant, the potential depends only on pH the slope of the line for a plot of potential versus pH is governed by the ratio m/n. Potential-pH diagrams are a concise means to display the redox properties of a system. We will take uranium as an example. The +6, +5, +4, and + 3 oxidation states are known in aqueous solution. The determination of +6 uranium by coulometric titration has been investigated by many workers and the lower oxidation states have all been used as coulometric titrants. Hydrolyzed uranium species exist in a noncomplexing solution, but the chemistry is simplified considerably if the discussion is limited to solutions more acidic than about pH 4. Some of the half-reactions to be considered are listed next with E° vs. NHE ... [Pg.758]

The solution chemistry of uranium is that of the +4 and +6 oxidation states, that is, U4+ and U02+. The formal reduction potential of uranium in aqueous solution (i.e., 1 M HC104) is... [Pg.471]

Redox [Reduction oxidation] A process for separating the components of used nuclear fuel by solvent extraction. It was the first such process to be used and was brought into operation at Hanford, WA, in 1951, but was superseded in 1954 by the Purex process. The key to the process was the alternate reduction and oxidation of the plutonium, hence the name. The solvent was Hexone (4-methyl-2-pentanone, methyl wobutyl ketone), so the process was also known as the Hexone process. The aqueous phase contained a high concentration of aluminum nitrate to salt out the uranium and plutonium nitrates into the organic phase. The presence of this aluminum nitrate in the wastes from the process, which made them bulky, was the main reason for the abandonment of the process. See also Butex. [Pg.303]

The first transition metal cation which is unstable in water but which can be generated as a stable entity in HF was U3+ [30]. It was formed by oxidation of the metal by protons in a BF3-HF solution which is non-oxidising and relatively weakly acidic. The UV-vis spectrum of the lilac-colored solution was virtually identical with that observed for an acidified aqueous solution in which the uranium solution was under continuous electrolytic reduction to maintain U(III) as the aquo-cation. [Pg.349]

In addition to the aqueous raffinates from the solvent extraction cycles of the Purex process, an actinide bearing waste stream will arise from the washing of the TBP/OK solvent prior to its recycle to the first cycle. These wastes will typically contain actinides in a mixed NajCOs/NaNOs solution which also contains HjMBP and HDBP. The uranium present will form soluble U complexes with carbonate, as discussed in Section 65.2.2.l(i). Carbonate complexation of Pu also leads to solubility in alkaline solutions and in Na2C03 media precipitation did not occur below pH 11.4, although precipitates did form on reduction to Pu One Pu" species precipitated from carbonate media has been identified as Pu(0H)3-Pu2(C03)3 H20. In 2M Na2C03 media, Np is oxidized by air to Np above pH 11.7 while Np either precipitates or is reduced above pH 13. The potential of the Am /Am " couple, in common with those of other actinides, becomes more cathodic with increasing carbonate concentration. In the total bicarbonate plus carbonate concentration range 1.2-2.3 M all the americium oxidation states from (III) to (VI)... [Pg.960]

In the reduction stripping process uranium(IV) in the raw wet process acid is oxidized to uranium(Vl) by treatment with sodium chlorate, hydrogen peroxide or air at 60 to 70°C, the uranium(VI) formed being extracted with trioctylphosphine oxide/di-(2-ethylhexyl)phosphate in kerosene and the resulting solution finally reductively stripped repeatedly with aqueous iron(II) solutions. This results in an enrichment by a factor of 40. After oxidation of the stripped solution with sodium chlorate or ambient oxygen and renewed extraction of the uranium(VI) formed with trioctylphosphine oxide/di-(2-ethylhexyl)phosphate, the phosphoric acid is removed from the organic phase by washing. The uranium(Vl) is then stripped with ammonium carbonate and precipitated as the ammonium diuranyl-tricarbonato-complex. This is filtered off, washed and calcined. [Pg.606]

In the oxidation stripping process the uranium(VI) in the raw wet process acid is initially reduced to uranium(IV), which is extracted with a mixture of mono and dioctylphenyl esters of phosphoric acid in kerosene. Oxidation with sodium chlorate in phosphoric acid transfers the uranium to the aqueous phase and it is then extracted with trioctylphosphine oxide/di-(2-ethyIhexyl)-phosphate, as in the reduction stripping process. [Pg.606]


See other pages where Uranium aqueous oxidation-reduction is mentioned: [Pg.250]    [Pg.203]    [Pg.201]    [Pg.1255]    [Pg.1273]    [Pg.1277]    [Pg.165]    [Pg.84]    [Pg.529]    [Pg.1059]    [Pg.216]    [Pg.30]    [Pg.408]    [Pg.757]    [Pg.788]    [Pg.797]    [Pg.938]    [Pg.947]    [Pg.954]    [Pg.960]    [Pg.627]    [Pg.1150]    [Pg.216]    [Pg.58]    [Pg.4777]    [Pg.286]    [Pg.788]    [Pg.797]    [Pg.938]    [Pg.954]   


SEARCH



Aqueous oxidation

Oxidation uranium oxides

Uranium reductant

Uranium reduction

© 2024 chempedia.info