Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Unsaturated ketones cycloadditions

The quiaones have excellent redox properties and are thus important oxidants ia laboratory and biological synthons. The presence of an extensive array of conjugated systems, especially the a,P-unsaturated ketone arrangement, allows the quiaones to participate ia a variety of reactioas. Characteristics of quiaoae reactioas iaclude nucleophilic substitutioa electrophilic, radical, and cycloaddition reactions photochemistry and normal and unusual carbonyl chemistry. [Pg.405]

In theory, three isoxazolines are capable of existence 2-isoxazoline (2), 3-isoxazoline and 4-isoxazoline. The position of the double bond may also be designated by the use of the prefix A with an appropriate numerical superscript. Of these only the 2-isoxazolines have been investigated in any detail. The preparation of the first isoxazoline, 3,5-diphenyl-2-isoxazoline, from the reaction of )3-chloro-)3-phenylpropiophenone with hydroxylamine was reported in 1895 (1895CB957). Two major syntheses of 2-isoxazolines are the cycloaddition of nitrile A-oxides to alkenes and the reaction of a,/3-unsaturated ketones with hydroxylamine. Since 2-isoxazolines are readily oxidized to isoxazoles and possess some of the unique properties of isoxazoles, they also serve as key intermediates for the synthesis of other heterocycles and natural products. [Pg.3]

The two major methods of preparation are the cycloaddition of nitrile oxides to alkenes and the reaction of a,/3-unsaturated ketones with hydroxylamines. Additional methods include reaction of /3-haloketones and hydroxylamine, the reaction of ylides with nitrile oxides by activation of alkyl nitro compounds from isoxazoline AT-oxides (methoxides, etc.) and miscellaneous syntheses (62HC(i7)i). [Pg.88]

The photochemical addition of simple olefins to a,j -unsaturated ketones is a reaction of great current interest. The steroidal A -20-ketone system is especially prone to cycloaddition under mild conditions. Sunder-Plassmann et irradiated 3j5-acetoxypregna-5,16-dien-20-one (67) in the presence... [Pg.470]

Two different alkenes can be brought to reaction to give a [2 -I- 2] cycloaddition product. If one of the reactants is an o, /3-unsaturated ketone 11, this will be easier to bring to an excited state than an ordinary alkene or an enol ether e.g. 12. Consequently the excited carbonyl compound reacts with the ground state enol ether. By a competing reaction pathway, the Patemo-Buchi reaction of the 0, /3-unsaturated ketone may lead to formation of an oxetane, which however shall not be taken into account here ... [Pg.78]

Anionic Diels-Alder reactions have been studied less extensively with the interest having been focused mainly on the cycloaddition of enolates of a,/l-unsaturated ketones with electron-poor olefins [24] (Equations 1.8 and 1.9). These reactions are fast and stereoselective and can be regarded as a sequential double Michael condensation, but a mechanism involving a Diels-Alder cycloaddition seems to be preferred [24b,f, 25]. [Pg.7]

The effectiveness of LP-NM with respect to LP-DE has also been proven by the cycloaddition of ketals of a,)S-unsaturated ketones with open-chain and cycloaliphatic dienes [46]. In 4.0m LP-NM the Diels-Alder reaction occurs with good yields and selectivities without using CSA, which is absolutely necessary when the reaction is performed in LP-DE (Section 6.2.1). Some examples are illustrated in Scheme 6.25. [Pg.274]

Photocycloaddition Reactions ofEnones. Cyclic a,(3-unsaturated ketones are another class of molecules that undergo photochemical cycloadditions.188 The reactive... [Pg.545]

Several unusual cycloaddition reactions of 9 with unsaturated ketones should be mentioned in conclusion the heterocumulene generated photolytically from 7 undergoes [8 + 2]-cycloaddition with tropone to form 33 (40%) the structure of the product has been unequivocally established by X-ray structure analysis 22,23). Once again, the affinity of phosphorus for oxygen is manifested an entirely analogous cycloaddition reaction is known for diphenylketene 26). [Pg.82]

Dihydro-2H-pyran-2-ones (e. g., 4-195) are valuable intermediates in the synthesis of several natural products [67]. Hattori, Miyano and coworkers [68] have recently shown that these compounds can be easily obtained in high yield by a Pd2+-catalyzed [2+2] cycloaddition of ct, 3-unsaturated aldehydes 4-192 with ketene 4-193, followed by an allylic rearrangement of the intermediate 4-194 (Scheme 4.42). In this reaction the Pd2+-compound acts as a mild Lewis acid. a,(3-unsaturated ketones can also be used, but the yields are below 20%. [Pg.307]

Isoxazolines are good precursors of a,(3-unsaturated ketones.63,94 This transformation is useful for synthesis of polyenes. For example, nitrile oxide cycloaddition chemistry is used to prepare 4-oxo-2-alkenylphosphonates, which are useful to synthesize a long polyethylenic unit via Woodworth-Emmons olefination (Eq. 8.66).101... [Pg.260]

The main products correspond in most cases to a formal [4+l]-cycloaddition. With butadiene, isoprene or a,/3-unsaturated ketones small amounts of a double bond isomer (a,/3 to Si) are observed. With a,/J-unsaturated amines the latter type of isomer is the main product. The nature of both isomers is consistent with a primary [2+l]-cycloaddition, preferably at a C=Y unit (Y = O, NR), followed by a ring-opening isomerization. [Pg.140]

A third important group of reactions that may be discussed with the first two groups is not necessarily photosensitized. The dimerizations and additions of cyclic a,/S-unsaturated ketones can be initiated by direct n-n excitation of the ketone, followed by addition reactions. However, the reactions are efficiently photosensitized by triplet sensitizers, and it is reasonable to propose that the unsensitized cycloaddition reactions also proceed via triplet states. 8>63>94> Examples are given in Eqs. 28—... [Pg.154]

The enone system itself is usually part of a five- or six membered ring, although acyclic a,(3-unsaturated ketones and enols of P-diketones are also found to undergo cycloadditions under certain conditions. For seven- and higher membered rings the primary photochemical event is Z—E isomerization around the C—C double bond, the E-isomer then eventually undergoing further thermal reactions. [Pg.57]

Like unsaturated ketones, a,0-unsaturated carboxylic acid derivatives, e.g. lactones and anhydrides, undergo cycloadditions to alkenes. As for the preparative conditions (direct irradiation or sensitized experiments) these compounds are situated somewhere in between enones on the one side and olefins on the other. [Pg.63]

Individual aspects of nitrile oxide cycloaddition reactions were the subjects of some reviews (161 — 164). These aspects are as follows preparation of 5-hetero-substituted 4-methylene-4,5-dihydroisoxazoles by nitrile oxide cycloadditions to properly chosen dipolarophiles and reactivity of these isoxazolines (161), 1,3-dipolar cycloaddition reactions of isothiazol-3(2//)-one 1,1-dioxides, 3-alkoxy- and 3-(dialkylamino)isothiazole 1,1-dioxides with nitrile oxides (162), preparation of 4,5-dihydroisoxazoles via cycloaddition reactions of nitrile oxides with alkenes and subsequent conversion to a, 3-unsaturated ketones (163), and [2 + 3] cycloaddition reactions of nitroalkenes with aromatic nitrile oxides (164). [Pg.21]

A regioselective [3 + 2]-cycloaddition approach to substituted 5-membered carbo-cycles was made available by the use of allenylsilanes [188]. The reaction involves regioselective attack of an unsaturated ketone by (trimethylsilyl)allene at the 3-position. The resulting vinyl cation undergoes a 1,2-silyl migration. The isomeric vinyl cation is intercepted intramolecularly by the titanium enolate to produce a highly substituted (trimethylsilyl)cyclopentene derivative. [Pg.804]

Acetoxymethyl)allyl]trimethylsilane (5) in the presence of a Pd(0) reagent, for instance, acts as an equivalent of trimethylenemethane in cycloadditions to electron-deficient alkenes such as a,p-unsaturated ketones, esters, nitriles, sulphones and lactones [7] (Scheme 6.6). [Pg.161]

Ketone rac-13 was transformed into the corresponding silylenolether and by Pd(II)-mediated Saegusa oxidation [14] into a, -unsaturated ketone rac-14. By alkylative enone transposition comprising methyl lithium addition and pyridinium chlorochromate (PCC) oxidation [15], rac-14 was finally converted into the racemic photo cycloaddition precursor rac-6. In conclusion, the bicyclic irradiation precursor rac-6 was synthesized in a straightforward manner from simple 1,5-cyclooctadiene (11) in nine steps and with an overall yield of 21%. [Pg.5]

Okamura and Nakatani [65] revealed that the cycloaddition of 3-hydroxy-2-py-rone 107 with electron deficient dienophiles such as simple a,p-unsaturated aldehydes form the endo adduct under base catalysis. The reaction proceeds under NEtj, but demonstrates superior selectivity with Cinchona alkaloids. More recently, Deng et al. [66], through use of modified Cinchona alkaloids, expanded the dienophile pool in the Diels-Alder reaction of 3-hydroxy-2-pyrone 107 with a,p-unsaturated ketones. The mechanistic insight reveals that the bifunctional Cinchona alkaloid catalyst, via multiple hydrogen bonding, raises the HOMO of the 2-pyrone while lowering the LUMO of the dienophile with simultaneous stereocontrol over the substrates (Scheme 22). [Pg.163]

Modifications to the architecture of the imidazolidinone catalyst provided the fnryl derivative (20) which proved to be a powerfnl catalyst for the catalytic asymmetric Diels-Alder cycloaddition of simple a,P-unsaturated ketones [50]. Although... [Pg.289]

Scheme 6 Diels-Alder cycloaddition of a, 3-unsaturated ketones... Scheme 6 Diels-Alder cycloaddition of a, 3-unsaturated ketones...
An interesting expansion to the scope of dienes that could be adopted as partners within the Diels-Alder cycloaddition was reported by Deng (Scheme 57) [193]. Reaction of 3-hydroxypyrones 145 with a broad range of a,p-unsaturated ketones in the presence of the primary cinchona alkaloid 144 (5 mol%) provided the Diels-Alder adducts with exceptional levels of asymmetric induction (up to 99% ee). Within this report it was also shown that the related alkaloid 146 provided access to the enantiomeric adducts with similar levels of asymmetric induction. [Pg.326]

Chen extended the scope of his iminium ion catalysed [3+2] cycloaddition with azomethine imines (see Sect. 2.1.2) to encompass cyclic a,P-unsaturated ketone substrates using primary amine 147 as the catalyst [194]. Interestingly, the presence... [Pg.326]

Alternative doubly and singly activated olefinic dipolarophiles also underwent cycloaddition, generating the products 47-49 in 27-61% yields, although attempted use of an ot,p-unsaturated ketone furnished 50 in only 8% yield, while unactivated dipolarophiles were unreactive (Fig. 3.4). [Pg.177]

This chapter deals mainly with the 1,3-dipolar cycloaddition reactions of three 1,3-dipoles azomethine ylides, nitrile oxides, and nitrones. These three have been relatively well investigated, and examples of external reagent-mediated stereocontrolled cycloadditions of other 1,3-dipoles are quite limited. Both nitrile oxides and nitrones are 1,3-dipoles whose cycloaddition reactions with alkene dipolarophiles produce 2-isoxazolines and isoxazolidines, their dihydro derivatives. These two heterocycles have long been used as intermediates in a variety of synthetic applications because their rich functionality. When subjected to reductive cleavage of the N—O bonds of these heterocycles, for example, important building blocks such as p-hydroxy ketones (aldols), a,p-unsaturated ketones, y-amino alcohols, and so on are produced (7-12). Stereocontrolled and/or enantiocontrolled cycloadditions of nitrones are the most widely developed (6,13). Examples of enantioselective Lewis acid catalyzed 1,3-dipolar cycloadditions are summarized by J0rgensen in Chapter 12 of this book, and will not be discussed further here. [Pg.757]


See other pages where Unsaturated ketones cycloadditions is mentioned: [Pg.71]    [Pg.662]    [Pg.271]    [Pg.1081]    [Pg.145]    [Pg.3]    [Pg.56]    [Pg.33]    [Pg.749]    [Pg.8]    [Pg.314]    [Pg.290]    [Pg.326]    [Pg.198]    [Pg.372]    [Pg.668]    [Pg.199]    [Pg.247]    [Pg.1496]    [Pg.454]   
See also in sourсe #XX -- [ Pg.861 ]




SEARCH



Cycloaddition ketones

Ketones cycloadditions

Ketones, unsaturated photochemical cycloaddition reactions

© 2024 chempedia.info