Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Unlike stereochemistry

Atactic polymer (Section 7 15) Polymer characterized by ran dom stereochemistry at its chirality centers An atactic polymer unlike an isotactic or a syndiotactic polymer is not a stereoregular polymer... [Pg.1276]

Unlike polyethylene and other simple aikene polymers, natural rubber is a polymer of a diene, isoprene (2-methyl-l,3-butadiene). The polymerization takes place by addition of isoprene monomer units to the growing chain, leading to formation of a polymer that still contains double bonds spaced regularly at four-carbon intervals. As the following structure shows, these double bonds have Z stereochemistry ... [Pg.245]

Formal isomerization of the double bond of testosterone to the 1-position and methylation at the 2-position provides yet another anabolic/androgenic agent. Mannich condensation of the fully saturated androstane derivative 93 with formaldehyde and di-methylamine gives aminoketone 94. A/B-trans steroids normally enolize preferentially toward the 2-position, explaining the regiospecificity of this reaction. Catalytic reduction at elevated temperature affords the 2a-methyl isomer 95. It is not at all unlikely that the reaction proceeds via the 2-methylene intermediate. The observed stereochemistry is no doubt attributable to the fact that the product represents the more stable equatorial isomer. The initial product would be expected to be the p-isomer but this would experience a severe 1,3-diaxial non-bonded interaction and epimerize via the enol. Bromination of the ketone proceeds largely at the tertiary carbon adjacent to the carbonyl (96). Dehydrohalogenation... [Pg.155]

Peddle and Redl,0) were still rather pessimistic in 1970 Thus while it should be possible to resolve an optically active organotin compound with four carbon-tin bonds, it seems unlikely that such a compound would be very useful in investigating the stereochemistry of substitution at the tin atom 10). [Pg.64]

A further finding concerns the stereochemistry of HD and its derivation from PA. Both HD and the primary PAs (monocrotaline, usaramine) that we know to be available to Utetheisa in the field are of the same (7R) stereochemical configuration. It was therefore not surprising to find that Utetheisa is unable to convert a PA of opposite (7S) stereochemistry (heliotrine) into HD. However, we found another arctiid moth, the Asian species Creatonotus transiens, which also produces HD in its coremata, to be able to use 7R and 7S PAs interchangeably for HD production (31). We are tempted to conclude that Creatonotus, unlike Utetheisa, has dietary access to PAs of both stereochemical configurations in its environment. [Pg.139]

The synthesis of libraries of structurally defined compounds can potentially be achieved either by split-mix synthesis or by parallel synthesis of individual compounds. The synthesis requires a reliable methodology of oligosaccharide synthesis, where stereochemistry and regioselectivity have to be achieved unlike other library approaches. Development of synthetic methodologies that can provide access to any oligosaccharide structure is underway. [Pg.242]

Cyclic Esters of Phosphorous Acid.—A large number of 2-substituted-4-methyl-l,3,2-dioxaphospholans (88) have been prepared and their stereochemistry and conformations investigated by 1H and 31P n.m.r.69 Unlike the corresponding 1,3-dioxans, the tra/w-isomer (88a) is favoured in all cases, and each isomer is best described in terms of two rapidly equilibrating half-chair conformers with the 4-alkyl group pseudo-axial or pseudo-equatorial. [Pg.98]

Cathodic cyclization reactions have supphed and continue to provide a fertile territory for the development and exploration of new reactions and the determination of reaction mechanism. Two areas that appear to merit additional exploration include the application of existing methodology to the synthesis of natural products, and, more significantly, a systematic assessment of the factors associated with the control of both relative and absolute stereochemistry. Until there is a solid foundation to which the non-electrochemist can confidently turn in evaluating the prospects for stereochemical control, it seems somewhat unlikely that electrochemically-based methods will see widespread use in organic synthesis. Fortunately, this comment can be viewed as a challenge and as a problem simply awaiting creative solution. [Pg.46]

To explain the stereochemistry of the allylic substitution reaction, a simple stereoelectronic model based on frontier molecular orbital considerations has been proposed (155, Fig. 6.2). Organocopper reagents, unlike C-nucleophiles, possess filled d-orbitals (d configuration), which can interact both with the 7t -(C=C) orbital at the y-carbon and to a minor extent with the o- -(C-X) orbital, as depicted... [Pg.210]

Photoinduced electron transfer promoted cyclization reactions of a-silyl-methyl amines have been described by two groups. The group of Pandey cyclized amines of type 135 obtaining pyrrolidines and piperidines 139 in high yields [148]. The cyclization of the a-silylated amine 140 leads to a 1 1 mixture of the isomers 141 and 142 [149]. The absence of diastereoselectivity in comparison to analogous 3-substituted-5-hexenyl radical carbocyclization stereochemistry [9] supports the notion that a reaction pathway via a free radical is unlikely in this photocyclization. The proposed mechanism involves delocalized a-silylmethyl amine radical cations as reactive intermediates. For stereochemical purposes, Pandey has investigated the cyclization reaction of 143, yielding... [Pg.97]

That only the wrong C-16 diastereomer seemed to be produced in this reaction was then demonstrated by the Kutney group, who prepared a series of binary indole-indoline alkaloids using the chloroindolenine approach. The apparent simplicity of this coupling reaction and the rapidity in assembling such binary alkaloids prompted an extensive study of reaction conditions (28), with the desire to find a procedure suitable for generation of the C-16 (S) isomer, required for anticancer activity. Despite the intensive effort involved in this in-depth study, no success could be realized, and it was therefore widely accepted that .. . it is very unlikely that any natural dimer could be obtained in this way (7). At this point it may be noted, however, that we were able to show subsequently that the desired C-16 -C-14 PARF relative stereochemistry can be obtained as a preferential result, albeit only in very low yield [3.6% PARF versus 2.1% PREF (priority reflective)], when the chloroindolenine reaction with vindoline is initiated with silver tetrafluoroborate (13). [Pg.83]


See other pages where Unlike stereochemistry is mentioned: [Pg.475]    [Pg.8]    [Pg.50]    [Pg.368]    [Pg.230]    [Pg.376]    [Pg.67]    [Pg.442]    [Pg.1435]    [Pg.291]    [Pg.204]    [Pg.280]    [Pg.42]    [Pg.434]    [Pg.1144]    [Pg.104]    [Pg.203]    [Pg.137]    [Pg.593]    [Pg.140]    [Pg.32]    [Pg.35]    [Pg.323]    [Pg.331]    [Pg.151]    [Pg.151]    [Pg.135]    [Pg.11]    [Pg.220]    [Pg.9]    [Pg.331]    [Pg.119]    [Pg.26]    [Pg.244]    [Pg.312]    [Pg.6]    [Pg.79]   
See also in sourсe #XX -- [ Pg.25 ]




SEARCH



Unlike

© 2024 chempedia.info