Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

UNIQUAC theory

If the mutual solubilities of the solvents A and B are small, and the systems are dilute in C, the ratio ni can be estimated from the activity coefficients at infinite dilution. The infinite dilution activity coefficients of many organic systems have been correlated in terms of stmctural contributions (24), a method recommended by others (5). In the more general case of nondilute systems where there is significant mutual solubiUty between the two solvents, regular solution theory must be appHed. Several methods of correlation and prediction have been reviewed (23). The universal quasichemical (UNIQUAC) equation has been recommended (25), which uses binary parameters to predict multicomponent equihbria (see Eengineering, chemical DATA correlation). [Pg.61]

The Universal Quasichemical (UNIQUAC) is a two-parameter (t12, x21) model based on statistical mechanical theory. Activity coefficients are obtained by... [Pg.277]

The earliest equations for Gibbs excess energy, like Margules and van Laar, were largely empirical. More recent equations and NRTL and UNIQUAC are based on a semiempirical physical model, called the two-liquid theory, based on local composition. The molecules do not mix in a random way, but because of different bonding effects, the molecules prefer a certain surrounding. This results in a composition at the molecular level, the local composition, which differs from the macroscopic composition. [Pg.426]

The UNIFAC (Unified quasi chemical theory of liquid mixtures Functional-group Activity Coefficients) group-contribution method for the prediction of activity coefficients in non-electrolyte liquid mixtures was first introduced by Fredenslund et al. (1975). It is based on the Unified Quasi Chemical theory of liquid mixtures (UNIQUAC) (Abrams and Prausnitz, 1975), which is a statistical mechanical treatment derived from the quasi chemical lattice model (Guggenheim, 1952). UNIFAC has been extended to polymer solutions by Oishi and Prausnitz (1978) who added a free volume contribution term (UNIFAC-FV) taken from the polymer equation-of-state of Flory (1970). [Pg.96]

There are many other equations, which have been proposed, that do not result from Wohl s method. Two of the most popular equations are the Wilson and the universal quasi-chemical theory (UNIQUAC) by Abrams and Prausnitz.These equations are based on the concept of local composition models, which was proposed by Wilson in his paper. It is presumed in a solution that there are local compositions that differ... [Pg.2004]

The Universal Quasi-chemical Theory or UNIQUAC method of Abrams and Prausnitz divides the excess Gibbs free energy into two parts. The dominant entropic contribution is described by a combinatorial part ( ). Intermolecular forces responsible for the enthalpy of mixing are described by a residual part ( ). The sizes and shapes of the molecule determine the combinatorial part, which is thus dependent on the compositions and requires only pure component data. Since the residual part depends on the intermolecular forces, two adjustable binary parameters are used to better describe the intermolecular forces. As the UNIQUAC equations are about as simple for multi-component solutions as for binary solutions, the UNIQUAC equations for multicomponent solutions are given below. Species are identified by subscript i, subscript j is a dummy index. Here, is a relative molecular surface area and r, is a relative molecular volume. Both of these quantities are pure-species parameters. [Pg.2083]

In the liquid phase, the simplest option is an ideal liquid, with an activity coefficient equal to 1.0. That choice leads to Raoult s law, which may suffice for similar chemicals. Other models include regular solution theory using solubility parameters (although not in Aspen Plus), NRTL, Electrolyte NRTL, UNIFAC, UNIQUAC, Van Laar, and Wilson. Characteristics of the models are ... [Pg.74]

Most of the recent theories of liquid solution behavior have been based on well-defined thermodynamic or statistical mechanical assumptions, so that the parameters that appear can be related to the molecular properties of the species in the mixture, and the resulting models have some predictive ability. Although a detailed study of the more fundamental approaches to liquid solution theory is beyond the scope of this book, we consider two examples here the theory of van Laar, which leads to regular solution theory and the UNIFAC group contribution model, which is based on the UNIQUAC model introduced in the previous section. Both regular solution theory and the UNIFAC model are useful for estimating solution behavior in the absence of experimental data. However, neither one is considered sufficiently accurate for the design of a chemical process. [Pg.443]

For the description of such interactions as well as of polymer swelling, models based on the Flory-Huggins Theory (Flory, 1953 Mulder, 1991) and UNIQUAC are often applied for mixtures in general and, for binary mixtures, also the Solubility Parameter Theory if the feed components are hydrophobic (Hildebrand and Scott,... [Pg.277]

The name of this model is an acronym of universal quasichemical, the name of the theory used to drive it. Like the Flory-Huggins model, UNIQUAC separates nonideal contributions to the excess Gibbs free energy into a combinatorial and a residual term ... [Pg.436]

It would be desirable to apply analytical expressions for the activity coefficient, which are not only able to describe the concentration dependence, but also the temperature dependence correctly. Presently, there is no approach completely fulfilling this task. But the newer approaches, as for example, the Wilson [13], NRTL (nonrandom two liquid theory) [14], and UNIQUAC (universal quasi-chemical theory) equation [15] allow for an improved description of the real behavior of multicomponent systems from the information of the binary systems. These approaches are based on the concept of local composition, introduced by Wilson [13]. This concept assumes that the local composition is different from the overall composition because of the interacting forces. For this approach, different boundary cases can be distinguished ... [Pg.207]


See other pages where UNIQUAC theory is mentioned: [Pg.34]    [Pg.34]    [Pg.252]    [Pg.252]    [Pg.459]    [Pg.252]    [Pg.252]    [Pg.57]    [Pg.459]    [Pg.483]    [Pg.459]    [Pg.333]    [Pg.459]    [Pg.1714]    [Pg.1714]    [Pg.384]    [Pg.346]    [Pg.341]    [Pg.28]    [Pg.28]    [Pg.548]    [Pg.1708]    [Pg.1708]    [Pg.252]    [Pg.252]    [Pg.277]    [Pg.281]    [Pg.281]    [Pg.211]    [Pg.236]    [Pg.259]    [Pg.4]    [Pg.460]    [Pg.241]   
See also in sourсe #XX -- [ Pg.34 ]




SEARCH



UNIQUAC

© 2024 chempedia.info