Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Tyrosine limits

The neurotransmitter must be present in presynaptic nerve terminals and the precursors and enzymes necessary for its synthesis must be present in the neuron. For example, ACh is stored in vesicles specifically in cholinergic nerve terminals. It is synthesized from choline and acetyl-coenzyme A (acetyl-CoA) by the enzyme, choline acetyltransferase. Choline is taken up by a high affinity transporter specific to cholinergic nerve terminals. Choline uptake appears to be the rate-limiting step in ACh synthesis, and is regulated to keep pace with demands for the neurotransmitter. Dopamine [51 -61-6] (2) is synthesized from tyrosine by tyrosine hydroxylase, which converts tyrosine to L-dopa (3,4-dihydroxy-L-phenylalanine) (3), and dopa decarboxylase, which converts L-dopa to dopamine. [Pg.517]

The dopamine is then concentrated in storage vesicles via an ATP-dependent process. Here the rate-limiting step appears not to be precursor uptake, under normal conditions, but tyrosine hydroxylase activity. This is regulated by protein phosphorylation and by de novo enzyme synthesis. The enzyme requites oxygen, ferrous iron, and tetrahydrobiopterin (BH. The enzymatic conversion of the precursor to the active agent and its subsequent storage in a vesicle are energy-dependent processes. [Pg.517]

Catecholamine biosynthesis begins with the uptake of the amino acid tyrosine into the sympathetic neuronal cytoplasm, and conversion to DOPA by tyrosine hydroxylase. This enzyme is highly localized to the adrenal medulla, sympathetic nerves, and central adrenergic and dopaminergic nerves. Tyrosine hydroxylase activity is subject to feedback inhibition by its products DOPA, NE, and DA, and is the rate-limiting step in catecholamine synthesis the enzyme can be blocked by the competitive inhibitor a-methyl-/)-tyrosine (31). [Pg.357]

DOPA in the bloodstream can be taken up into neural tissue and into tissue devoid of tyrosine hydroxylase, thus bypassing the rate-limiting enzymatic synthetic step (35). Uptake of DOPA by the brain is the basis of the therapeutic effect of DOPA in the treatment of Parkinson s disease (a... [Pg.357]

The dopamine system constitutes the cellular and biochemical network that is involved in the synthesis, release, and response to dopamine. In general, this involves cells that express significant levels of tyrosine hydroxylase (TH) and limited amounts of dopamine (3-hydioxylase [1]. Dopamine-responsive cells express receptors specifically activated by this neurotransmitter, which are known as dopamine Dl, D2, D3, D4, and D5 receptors [2, 3]. [Pg.437]

Neurotransmitter Transporters. Figure 3 Dopamine turnover at a presynaptic nerve terminal, (a) Dopamine is produced by tyrosine hydroxylase (TH). When secretory vesicles are filled, they join the releasable pool of vesicles at the presynaptic membrane. Upon exocytosis, the diffusion of released dopamine is limited by reuptake via DAT. (b) If DAT is inactive, dopamine spreads in the cerebrospinal fluid but cannot accumulate in secretory vesicles. This results in a compensatory increase of dopamine hydroxylase activity and a higher extracellular dopamine level mice with inactive DAT are hyperactive. [Pg.839]

Trace Amines. Figure 1 The main routes of trace amine metabolism. The trace amines (3-phenylethylamine (PEA), p-tyramine (TYR), octopamine (OCT) and tryptamine (TRP), highlighted by white shading, are each generated from their respective precursor amino acids by decarboxylation. They are rapidly metabolized by monoamine oxidase (MAO) to the pharmacologically inactive carboxylic acids. To a limited extent trace amines are also A/-methylated to the corresponding secondary amines which are believed to be pharmacologically active. Abbreviations AADC, aromatic amino acid decarboxylase DBH, dopamine b-hydroxylase NMT, nonspecific A/-methyltransferase PNMT, phenylethanolamine A/-methyltransferase TH, tyrosine hydroxylase. [Pg.1219]

Tyrosine hydroxylase (TH) is an enzyme that catalyzes the hydroxylation of tyrosine to 3,4-dihydroxypheny-lalanine in the brain and adrenal glands. TH is the rate-limiting enzyme in the biosynthesis of dopamine. This non-heme iron-dependent monoxygenase requires the presence of the cofactor tetrahydrobiopterin to maintain the metal in its ferrous state. [Pg.1253]

Other approaches directed to the mRNA of tyrosine kinase and thereby interfering with their translation to proteins, such as anti-sense therapy and RNA interference (RNAi) are less advanced and currently limited to laboratory studies. [Pg.1257]

A. Tyrosine Hydroxylase Is Rate-Limiting FOR Catecholamine Biosynthesis ... [Pg.446]

Tyrosine is the immediate precursor of catecholamines, and tyrosine hydroxylase is the rate-limiting enzyme in catecholamine biosynthesis. Tyrosine hydroxylase is found in both soluble and particle-bound forms only in tissues that synthesize catecholamines it functions as an oxidoreductase, with tetrahydropteridine as a cofactor, to convert L-tyrosine to L-dihydroxyphenylalanine (L-dopa). [Pg.446]

As the rate-limiting enzyme, tyrosine hydroxylase is regulated in a variety of ways. The most important mechanism involves feedback inhibition by the catecholamines, which compete with the enzyme for the pteridine cofactor. Catecholamines cannot cross the blood-brain barrier hence, in the brain they must be synthesized locally. In certain central nervous system diseases (eg, Parkinson s disease), there is a local deficiency of dopamine synthesis. L-Dopa, the precursor of dopamine, readily crosses the blood-brain barrier and so is an important agent in the treatment of Parkinson s disease. [Pg.446]

The turnover rate of a transmitter can be calculated from measurement of either the rate at which it is synthesised or the rate at which it is lost from the endogenous store. Transmitter synthesis can be monitored by administering [ H]- or [ " C]-labelled precursors in vivo these are eventually taken up by neurons and converted into radiolabelled product (the transmitter). The rate of accumulation of the radiolabelled transmitter can be used to estimate its synthesis rate. Obviously, the choice of precursor is determined by the rate-limiting step in the synthetic pathway for instance, when measuring catecholamine turnover, tyrosine must be used instead of /-DOPA which bypasses the rate-limiting enzyme, tyrosine hydroxylase. [Pg.82]

Tyrosine is converted to dopa by the cytoplasmic enzyme tyrosine hydroxylase. This is the rate-limiting step 5 x 10 M) in DA synthesis, it requires molecular O2 and Fe + as well as tetrahydropterine (BH-4) cofactor and is substrate-specific. It can be inhibited by a-methyl-p-tyrosine, which depletes the brain of both DA and NA and it is particularly important for the maintenance of DA synthesis. Since the levels of tyrosine are above the for tyrosine hydroxylase the enzyme is normally saturated and so it is not possible to increase DA levels by giving tyrosine. [Pg.141]

It is possible to deplete the brain of both DA and NA by inhibiting tyrosine hydroxylase but while NA may be reduced independently by inhibiting dopamine jS-hydroxylase, the enzyme that converts DA to NA, there is no way of specifically losing DA other than by destruction of its neurons (see below). In contrast, it is easier to augment DA than NA by giving the precursor dopa because of its rapid conversion to DA and the limit imposed on its further synthesis to NA by the restriction of dopamine S-hydroxylase to the vesicles of NA terminals. The activity of the rate-limiting enzyme tyrosine hydroxylase is controlled by the cytoplasmic concentration of DA (normal end-product inhibition), presynaptic dopamine autoreceptors (in addition to their effect on release) and impulse flow, which appears to increase the affinity of tyrosine hydroxylase for its tetrahydropteridine co-factor (see below). [Pg.141]

Figure 8.5 The synthetic pathway for noradrenaline. The hydroxylation of the amino acid, tyrosine, which forms dihydroxyphenylalanine (DOPA) is the rate-limiting step. Conversion of dopamine to noradrenaline is effected by the vesicular enzyme, dopamine-P-hydroxylase (DpH) after uptake of dopamine into the vesicles from the cell cytosol... Figure 8.5 The synthetic pathway for noradrenaline. The hydroxylation of the amino acid, tyrosine, which forms dihydroxyphenylalanine (DOPA) is the rate-limiting step. Conversion of dopamine to noradrenaline is effected by the vesicular enzyme, dopamine-P-hydroxylase (DpH) after uptake of dopamine into the vesicles from the cell cytosol...
Lequea et al. used the activity of tyrosine apodecarboxylase to determine the concentration of the enzyme cofactor pyridoxal 5 -phosphate (vitamin B6). The inactive apoenzyme is converted to the active enzyme by pyridoxal 5 -phosphate. By keeping the cofactor the limiting reagent in the reaction by adding excess apoenzyme and substrate, the enzyme activity is a direct measure of cofactor concentration. The enzymatic reaction was followed by detecting tyramine formation by LCEC. The authors used this method to determine vitamin B6 concentrations in plasma samples. [Pg.29]

Originally, for preparation of such conjugates the hydroxyl groups of monomethoxy-PEG (mPEG) were activated with cyanuric chloride, and the resulting compound then coupled with proteins (10). This approach suffers from disadvantages, such as the toxicity of cyanuric chloride and its limited applicability for modification of proteins having essential cysteine or tyrosine residues, as manifested by their loss of activity. [Pg.94]

Figure 4. DDC (A), serotonin (B), and tyrosine hydroxylase (C) immunore-activity in the posterior region of a wild-type Drosophila ventral ganglion. Tyrosine hydroxylase (TH) encodes the rate-limiting step in dopamine biosynthesis and is a marker for dopamine cells. B and C are the same CNS assayed for both serotonin and TH. M, medial dopamine neurons VL, ventrolateral serotonin neurons DL, dorsolateral dopamine neurons. Short unmarked arrows in C show vacuolated cells that do not contain DDC immunoreactivity. The immunoreactivity in these cells may represent a nonspecific cross-reactivity of the rat TH antibody. The length bar in A is 50 pM. The images are confocal projections generated on a Molecular Dynamics-2000 confocal laser scanning microscope. Figure 4. DDC (A), serotonin (B), and tyrosine hydroxylase (C) immunore-activity in the posterior region of a wild-type Drosophila ventral ganglion. Tyrosine hydroxylase (TH) encodes the rate-limiting step in dopamine biosynthesis and is a marker for dopamine cells. B and C are the same CNS assayed for both serotonin and TH. M, medial dopamine neurons VL, ventrolateral serotonin neurons DL, dorsolateral dopamine neurons. Short unmarked arrows in C show vacuolated cells that do not contain DDC immunoreactivity. The immunoreactivity in these cells may represent a nonspecific cross-reactivity of the rat TH antibody. The length bar in A is 50 pM. The images are confocal projections generated on a Molecular Dynamics-2000 confocal laser scanning microscope.

See other pages where Tyrosine limits is mentioned: [Pg.168]    [Pg.168]    [Pg.188]    [Pg.73]    [Pg.298]    [Pg.249]    [Pg.19]    [Pg.83]    [Pg.439]    [Pg.787]    [Pg.840]    [Pg.1039]    [Pg.1257]    [Pg.94]    [Pg.249]    [Pg.258]    [Pg.198]    [Pg.222]    [Pg.122]    [Pg.168]    [Pg.191]    [Pg.277]    [Pg.196]    [Pg.215]    [Pg.8]    [Pg.480]    [Pg.167]    [Pg.63]    [Pg.81]    [Pg.146]    [Pg.239]    [Pg.184]    [Pg.268]   
See also in sourсe #XX -- [ Pg.378 , Pg.379 ]




SEARCH



© 2024 chempedia.info