Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Tungsten conversion

FIGURE 5.8. Simplified flow sheet of a modem tungsten conversion plant. [Pg.188]

The first-stage catalysts for the oxidation to methacrolein are based on complex mixed metal oxides of molybdenum, bismuth, and iron, often with the addition of cobalt, nickel, antimony, tungsten, and an alkaU metal. Process optimization continues to be in the form of incremental improvements in catalyst yield and lifetime. Typically, a dilute stream, 5—10% of isobutylene tert-huty alcohol) in steam (10%) and air, is passed over the catalyst at 300—420°C. Conversion is often nearly quantitative, with selectivities to methacrolein ranging from 85% to better than 95% (114—118). Often there is accompanying selectivity to methacrylic acid of an additional 2—5%. A patent by Mitsui Toatsu Chemicals reports selectivity to methacrolein of better than 97% at conversions of 98.7% for a yield of methacrolein of nearly 96% (119). [Pg.253]

EBHP is mixed with a catalyst solution and fed to a horizontal compartmentalized reactor where propylene is introduced into each compartment. The reactor operates at 95—130°C and 2500—4000 kPa (360—580 psi) for 1—2 h, and 5—7 mol propylene/1 mol EBHP are used for a 95—99% conversion of EBHP and a 92—96% selectivity to propylene oxide. The homogeneous catalyst is made from molybdenum, tungsten, or titanium and an organic acid, such as acetate, naphthenate, stearate, etc (170,173). Heterogeneous catalysts consist of titanium oxides on a siUca support (174—176). [Pg.140]

High density tungsten alloy machine chips are recovered by oxidation at about 850°C, foUowed by reduction in hydrogen at 700—900°C. Typically, the resultant powders are about 3-p.m grain size and resinter readily. There can be some pickup of refractory materials used in furnace constmction, which must be controUed. This process is important commercially. Eor materials that may be contaminated with other metals or impurities, the preferred recovery process is the wet chemical conversion process used for recovery of tungsten from ores and process wastes. Materials can always be considered for use as additions in alloy steel melting. [Pg.285]

The metathetic reaction occurs in the gas phase at relatively high temperatures (150°-350°C) with molybdenum or tungsten supported catalysts or at low temperature (=50°C) with rhenium-based catalyst in either liquid or gas-phase. The liquid-phase process gives a better conversion. Equilibrium conversion in the range of 55-65% could be realized, depending on the reaction temperature. ... [Pg.247]

Molybdenum and tungsten are unique in that they are resistant to sulfur, and, in fact, are commonly sulfided before use. The Bureau of Mines tested a variety of molybdenum catalysts (32). They are moderately active but relatively high temperatures are required in order to achieve good conversion, even at low space velocities. Selectivity to methane was 79-94%. Activity is considerably less than that of nickel. Although they are active with sulfur-bearing synthesis gas, the molybdenum and tungsten catalysts are not sufficiently advanced to be considered candidates for commercial use. [Pg.25]

An obvious drawback in RCM-based synthesis of unsaturated macrocyclic natural compounds is the lack of control over the newly formed double bond. The products formed are usually obtained as mixture of ( /Z)-isomers with the (E)-isomer dominating in most cases. The best solution for this problem might be a sequence of RCAM followed by (E)- or (Z)-selective partial reduction. Until now, alkyne metathesis has remained in the shadow of alkene-based metathesis reactions. One of the reasons maybe the lack of commercially available catalysts for this type of reaction. When alkyne metathesis as a new synthetic tool was reviewed in early 1999 [184], there existed only a single report disclosed by Fiirstner s laboratory [185] on the RCAM-based conversion of functionalized diynes to triple-bonded 12- to 28-membered macrocycles with the concomitant expulsion of 2-butyne (cf Fig. 3a). These reactions were catalyzed by Schrock s tungsten-carbyne complex G. Since then, Furstner and coworkers have achieved a series of natural product syntheses, which seem to establish RCAM followed by partial reduction to (Z)- or (E)-cycloalkenes as a useful macrocyclization alternative to RCM. As work up to early 2000, including the development of alternative alkyne metathesis catalysts, is competently covered in Fiirstner s excellent review [2a], we will concentrate here only on the most recent natural product syntheses, which were all achieved by Fiirstner s team. [Pg.353]

Investigation of direct conversion of methane to transportation fiiels has been an ongoing effort at PETC for over 10 years. One of our current areas of research is the conversion of methane to methanol, under mild conditions, using li t, water, and a semiconductor photocatalyst. Research in our laboratory is directed toward ad ting the chemistry developed for photolysis of water to that of methane conversion. The reaction sequence of interest uses visible light, a doped tungsten oxide photocatalyst and an electron transfer molecule to produce a hydroxyl i cal. Hydroxyl t cal can then react with a methane molecule to produce a methyl radical. In the preferred reaction pathway, the methyl radical then reacts with an additional wata- molecule to produce methanol and hydrogen. [Pg.407]

Complex 7-AI2O3/PTA/ (/< ./< )-(Mc-DuPHOS)Rh(COD) 1 (1) was prepared and tested in the hydrogenation of the prochiral substrate methyl-2-acetamidoacrylate (MAA). After full conversion, the products were separated from the catalyst and analyzed for Rh and W content and product selectivity. The catalyst was re-used three times. Analytical results show no rhodium leaching is observed. Complex 1 maintains its activity and selectivity in each successive run. The first three runs show tungsten (W) leaching but after that no more W is detectable. The leached W comes from the excess of PTA on alumina. The selectivity of both tethered and non-tethered forms gave the product in 94% ee. [Pg.120]

The possible mechanisms which one might invoke for the activation of these transition metal slurries include (1) creation of extremely reactive dispersions, (2) improved mass transport between solution and surface, (3) generation of surface hot-spots due to cavitational micro-jets, and (4) direct trapping with CO of reactive metallic species formed during the reduction of the metal halide. The first three mechanisms can be eliminated, since complete reduction of transition metal halides by Na with ultrasonic irradiation under Ar, followed by exposure to CO in the absence or presence of ultrasound, yielded no metal carbonyl. In the case of the reduction of WClfc, sonication under CO showed the initial formation of tungsten carbonyl halides, followed by conversion of W(C0) , and finally its further reduction to W2(CO)io Thus, the reduction process appears to be sequential reactive species formed upon partial reduction are trapped by CO. [Pg.206]


See other pages where Tungsten conversion is mentioned: [Pg.619]    [Pg.619]    [Pg.175]    [Pg.84]    [Pg.46]    [Pg.528]    [Pg.378]    [Pg.224]    [Pg.1026]    [Pg.248]    [Pg.200]    [Pg.200]    [Pg.254]    [Pg.433]    [Pg.325]    [Pg.1340]    [Pg.115]    [Pg.781]    [Pg.782]    [Pg.783]    [Pg.299]    [Pg.107]    [Pg.42]    [Pg.50]    [Pg.375]    [Pg.375]    [Pg.376]    [Pg.76]    [Pg.110]    [Pg.320]    [Pg.749]    [Pg.750]    [Pg.94]    [Pg.259]    [Pg.367]    [Pg.478]    [Pg.415]    [Pg.231]    [Pg.315]    [Pg.30]    [Pg.199]   


SEARCH



Tungsten hexafluoride conversion of aldehydes and

© 2024 chempedia.info