Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Troposphere chlorofluorocarbon lifetimes

The temperature inversion at the tropopause prevents mixing between the stratosphere and troposphere, with hotter air (less dense) sitting on top of cooler air (more dense). Pollutants (such as chlorofluorocarbons) present in the stratosphere have very long lifetimes (of order 30 years) and become persistent problems, especially... [Pg.213]

The chlorofluorocarbons (CFCs) have very long lifetimes in the troposphere. This is a consequence of the fact that they do not absorb light of wavelengths above 290 nm and do not react at significant rates with 03, OH, or N03. In addition to the lack of chemical sinks, there do not appear to be substantial physical sinks thus they are not very soluble in water and hence are not removed rapidly by rainout. While laboratory studies have shown that some of the CFCs decompose on exposure to visible and near-UV present in the troposphere when the compounds are adsorbed on siliceous materials such as sand (Ausloos et al., 1977 Gab et al., 1977, 1978), the lifetimes for CFC-11 and CFC-12 with respect to these processes have been estimated to be 540 and 1800 years, respectively (National Research Council, 1979). Similarly, an observed thermal decomposition when adsorbed on sand appears to be an insignificant loss process under atmospheric conditions. [Pg.671]

The impact of deposition on global distribution has been noted for the CFC replacements hydro-chlorofluorocarbons (HCFCs), the chlorinated solvents tetrachloroethene (PCE), and trichloro-ethene (TCE), as these compounds undergo gas phase oxidation and photochemical degradation, resulting in the formation of carbonyl halides (e.g., CCI2O) and haloacetyl halides (e.g., bromo-, chloro-, and fluoroacetates). As these compounds are polar and water soluble, they are transported via aerosols, rain, and fog, which impacts their tropospheric lifetime and depositional fluxes (Rompp et al., 2001 de Bmyn et al., 1995). It is not clear whether and to what extent there is evidence of latitudinal fractionation of these compounds. [Pg.5052]

The oxidizing properties of the troposphere have a strong influence on the lifetime of chemical compounds in the atmosphere, and hence on the probability for a molecule to reach the middle atmosphere. Most hydrocarbons, for example, including hydrogenated halocarbons, are efficiently destroyed by the OH radical in the troposphere before they can penetrate into the stratosphere. Compounds that are not oxidized in the troposphere (e.g., chlorofluorocarbons) or weakly oxidized (e.g., methane) reach the stratosphere more easily. [Pg.412]

The much-discussed chlorofluorocarbons, or CFCs, contribute to the destruction of the ozone layer because they have long lifetimes in the troposphere. Thus, they persist long enough so that a substantial fraction of the molecules formed at the surface find their way to the stratosphere. Another... [Pg.542]


See other pages where Troposphere chlorofluorocarbon lifetimes is mentioned: [Pg.99]    [Pg.367]    [Pg.51]    [Pg.504]    [Pg.60]    [Pg.51]    [Pg.1]    [Pg.35]    [Pg.1561]    [Pg.361]    [Pg.367]    [Pg.31]    [Pg.272]    [Pg.319]    [Pg.149]    [Pg.407]   
See also in sourсe #XX -- [ Pg.149 ]




SEARCH



Chlorofluorocarbons

Chlorofluorocarbons lifetimes

Troposphere

Tropospheric

Tropospheric lifetimes

© 2024 chempedia.info