Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Trimethylsilylated nitrogen

The benzoic acid derivative 457 is formed by the carbonylation of iodoben-zene in aqueous DMF (1 1) without using a phosphine ligand at room temperature and 1 atm[311]. As optimum conditions for the technical synthesis of the anthranilic acid derivative 458, it has been found that A-acetyl protection, which has a chelating effect, is important[312]. Phase-transfer catalysis is combined with the Pd-catalyzed carbonylation of halides[3l3]. Carbonylation of 1,1-dibromoalkenes in the presence of a phase-transfer catalyst gives the gem-inal dicarboxylic acid 459. Use of a polar solvent is important[314]. Interestingly, addition of trimethylsilyl chloride (2 equiv.) increased yield of the lactone 460 remarkabiy[3l5]. Formate esters as a CO source and NaOR are used for the carbonylation of aryl iodides under a nitrogen atmosphere without using CO[316]. Chlorobenzene coordinated by Cr(CO)j is carbonylated with ethyl formate[3l7]. [Pg.190]

One type of o-aminobenzyl anion synthon is a mixed Cu/Zn reagent which can be prepared from o-toluidines by / i.s-trimethylsilylation on nitrogen, benzylic bromination and reaction with Zn and CuCN[l]. Reaction of these reagents with acyl halides gives 2-substituted indoles. [Pg.49]

The chlorosilanes are clear Hquids that should be treated as strong acids. They react readily with water to form corrosive HCl gas and Hquid. Liquid chlorosilanes and their vapors are corrosive to the skin and extremely irritating to the mucous membranes of the eyes, nose, and throat. The nitrogen-functional silanes react with water to form ammonia, amines, or amides. Because ammonia and amines are moderately corrosive to the skin and very irritating to the eyes, nose, and throat, silylamines should be handled like organic amines. Trimethylsilyl trifluoromethanesulfonate and trimethylsilyl iodide form very corrosive acidic products. [Pg.70]

Azoles can form stable compounds in which metallic and metalloid atoms are linked to nitrogen. For example, pyrazoles and imidazoles Af-substituted by B, Si, P and Hg groups are made in this way. Imidazoles with a free NH group can be Af-trimethylsilylated and Af-cyanated (with cyanogen bromide). Imidazoles of low basicity can be Af-nitrated. [Pg.55]

In (73S47) the cleavage of the trimethylsilyl protector is used to prepare the nitrogen-unsubstituted 3-aryl-5-ethynylpyrazoles (Scheme 96). [Pg.47]

Merck s thienamycin synthesis commences with mono (V-silylation of dibenzyl aspartate (13, Scheme 2), the bis(benzyl) ester of aspartic acid (12). Thus, treatment of a cooled (0°C) solution of 13 in ether with trimethylsilyl chloride and triethylamine, followed by filtration to remove the triethylamine hydrochloride by-product, provides 11. When 11 is exposed to the action of one equivalent of tm-butylmagnesium chloride, the active hydrogen attached to nitrogen is removed, and the resultant anion spontaneously condenses with the electrophilic ester carbonyl four atoms away. After hydrolysis of the reaction mixture with 2 n HC1 saturated with ammonium chloride, enantiomerically pure azetidinone ester 10 is formed in 65-70% yield from 13. Although it is conceivable that... [Pg.251]

The synthesis of key intermediate 6 begins with the asymmetric synthesis of the lactol subunit, intermediate 8 (see Scheme 3). Alkylation of the sodium enolate derived from carboximide 21 with allyl iodide furnishes intermediate 26 as a crystalline solid in 82 % yield and in >99 % diastereomeric purity after recrystallization. Guided by transition state allylic strain conformational control elements5d (see Scheme 4), the action of sodium bis(trimethylsilyl)amide on 21 affords chelated (Z)-enolate 25. Chelation of the type illustrated in 25 prevents rotation about the nitrogen-carbon bond and renders... [Pg.491]

Very few 1-unsubstituted 17/-azcpines have been isolated and, as a consequence, substitution at nitrogen is a rare event however, 1-mesyl-l//-azepine (8) and l-(trimethylsilyl)-l //-azepine (9) can be obtained by treating 1//-azepine (7) with mesyl chloride and with trimethylsilyl trifluoromethanesulfonate, respectively.9... [Pg.164]

A number of approaches have been tried for modified halo-de-diazoniations using l-aryl-3,3-dialkyltriazenes, which form diazonium ions in an acid-catalyzed hydrolysis (see Sec. 13.4). Treatment of such triazenes with trimethylsilyl halides in acetonitrile at 60 °C resulted in the rapid evolution of nitrogen and in the formation of aryl halides (Ku and Barrio, 1981) without an electron transfer reagent or another catalyst. Yields with silyl bromide and with silyl iodide were 60-95%. The authors explain the reaction as shown in (Scheme 10-30). The formation of the intermediate is indicated by higher yields if electron-withdrawing substituents (X = CN, COCH3) are present. In the opinion of the present author, it is likely that the dissociation of this intermediate is not a concerted reaction, but that the dissociation of the A-aryl bond to form an aryl cation is followed by the addition of the halide. The reaction is therefore mechanistically not related to the homolytic halo-de-diazoniations. [Pg.238]

Other thietane derivatives have been obtained by isomerization of nitrogen-containing heterocycles. The reaction of an acyl isothiocyanate (RCONCS) with diphenyldiazomethane gave 20 and this isomerized in solution to the tetraphenyl-3-thietanone 21 <96BSB253>. Additionally, the isoxazolidine 22 was converted into 23 by the action of trimethylsilyl iodide and zinc iodide <96H1211>. [Pg.67]

An interesting [1,3]-Si shift from nitrogen to nitrogen has been observed in the Staudinger imination reaction of AT-ferf-butyl-iV-trimethylsilyl-P,P-di-methyl phosphinous amide 32 with trimethylsilylazide [137]. The steric bulk provided by the tert-hutjl group seems to determine the direction of the silyl shift (Scheme 32). [Pg.93]


See other pages where Trimethylsilylated nitrogen is mentioned: [Pg.70]    [Pg.70]    [Pg.70]    [Pg.469]    [Pg.70]    [Pg.70]    [Pg.70]    [Pg.469]    [Pg.154]    [Pg.315]    [Pg.321]    [Pg.540]    [Pg.97]    [Pg.98]    [Pg.201]    [Pg.198]    [Pg.22]    [Pg.206]    [Pg.628]    [Pg.807]    [Pg.1036]    [Pg.188]    [Pg.119]    [Pg.188]    [Pg.93]    [Pg.111]    [Pg.13]    [Pg.14]    [Pg.15]    [Pg.28]    [Pg.40]    [Pg.56]    [Pg.68]    [Pg.131]    [Pg.245]    [Pg.258]    [Pg.302]    [Pg.1]    [Pg.579]    [Pg.168]    [Pg.172]    [Pg.366]    [Pg.29]   
See also in sourсe #XX -- [ Pg.469 ]




SEARCH



Azides, trimethylsilyl introduction of nitrogen

© 2024 chempedia.info