Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Trimethylsilyl = TMS

The reductive couphng of imines can follow different pathways, depending on the nature of the one-electron reducing agent (cathode, metal, low-valent metal salt), the presence of a protic or electrophihc reagent, and the experimental conditions (Scheme 2). Starting from the imine 7, the one-electron reduction is facihtated by the preliminary formation of the iminiiim ion 8 by protonation or reaction with an electrophile, e.g., trimethylsilyl (TMS) chloride. Alternatively, the radical anion 9 is first formed by direct reduction of the imine 7, followed by protonation or reaction with the electrophile, so giving the same intermediate a-amino radical 10. The 1,2-diamine 11 can be formed from the radical 10 by dimerization (and subsequent removal of the electrophile) or addition to the iminium ion 8, followed by one-electron reduction of the so formed aminyl radical. In certain cases/conditions the radical 9 can be further reduced to the carbanion 12, which then attacks the... [Pg.5]

The method can be further improved using trimethylsilyl (TMS) enol ethers, which can be prepared in situ from aldehydes and ketones [49]. TMS enol ethers of cyclic ketones are also suitable, and diversity can be enhanced by making either the kinetic or thermodynamic enol ether, as shown for benzyl methyl ketone. Thus, reaction of the kinetic TMS enol ether 10-133 with the amino aldehyde 10-134 and dimethylbarbituric acid 10-135 yielded 10-136, whereas the thermodynamic TMS enol ether 10-137 led to 10-138, again in excellent purity, simply by adding diethyl ether to the reaction mixture (Scheme 10.33). [Pg.587]

Table 7.1 reports the ions commonly used in SIM acquisition for the quantification of trimethylsilyl (TMS) and f-butyldimethylsilyl (TBDMS) derivatives. [Pg.194]

Table 7.1 Ions for trimethylsilyl (TMS) and t butyldi methyl si lyl (TBDMS) derivatives of lipid compounds useful for quantitation in selected ion monitoring... Table 7.1 Ions for trimethylsilyl (TMS) and t butyldi methyl si lyl (TBDMS) derivatives of lipid compounds useful for quantitation in selected ion monitoring...
The Baran group has reported an unusual deprotection of allyl esters in micro-wave-superheated water. A diallyl ester structurally related to the sceptrin natural products (see Scheme 6.87) was cleanly deprotected at 200 °C within 5 min (Scheme 6.168) [181]. Other standard deprotection transformations carried out under microwave conditions, specifically N-detosylations [317], trimethylsilyl (TMS) removal [318, 319], and N-tert-butoxycarbonyl (Boc) deprotection [231], are summarized in Scheme 6.169. [Pg.217]

The addition of trimethylsilyl (TMS) cyanide to aldehydes produces TMS-protected cyanohydrins. In a recent investigation a titanium salen-type catalyst has been employed to catalyse trimethylsilylcyanide addition to benzaldehyde at ambient temperature1118]. Several other protocols have been published which also lead to optically active products. One of the more successful has been described by Abiko et al. employing a yttrium complex derived from the chiral 1,3-diketone (41)[119] as the catalyst, while Shibasaki has used BINOL, modified so as to incorporate Lewis base units adjacent to the phenol moieties, as the chiral complexing agent11201. [Pg.29]

Trimethylsilyl (TMS) derivatives in organic synthesis, 22 695-696 as silylating agents, 22 694 Trimethylsilyl azide, as silylating agent, 22 695-696... [Pg.972]

The advantage of trimethylsilyl (TMS) derivatives lies in the simplicity of the derivatization procedure, which is carried out by the addition of N,0-bis(trimethylsilyl)trifluoroacetamide (BSTFA) in acetonitrile and heating for approximately 2 h at 150 °C under anhydrous conditions in a sealed tube. However, there may be problems owing to the formation of multiple derivatives of each amino acid. Another technique involves the formation of n-butyl esters of the amino acids and their subsequent trimethylsilylation by a similar procedure. The n-butyl esters are formed by heating the amino acids for 15 min in n-butanol and HC1 and these are then converted to the A-TMS-n-butyl ester derivatives. A-acyl amino acid alkyl esters are commonly used. Acetylation of the butyl, methyl or propyl esters of amino acids,... [Pg.371]

Endogenous and exogenous androgens can be derivatized with trimethylsilyl (TMS) for hydroxy functions and by 0-methylation for ketones, and analyzed with GC-FID or GC-MS (Shimada et al., 2001). MS is more prevalent due to unequivocal identification and greatly increased sensitivity but FID is still used in laboratories for some steroids. Sterols have typically been analyzed by GC-FID and GC-MS with derivatization to optimize peak shape (Shimada et al., 2001), and bile acids can be derivatized with M-butyl ester-TMS ether and analyzed by GC-FID from plasma samples (Batta et al., 1998). Juricskay and Telegdy (2000) reported an assay capable of analyzing 28 steroids in urine samples using GC-FID. [Pg.9]

Furthermore, when trimethylsilylacetylene 40 was used as an alkyne in the [IrCl(cod)]2-catalyzed reaction, propargyUc amines (where the alkyne was added to the double bond of imine) were obtained (Equation 10.7) [21, 23]. It is probable that the reaction proceeds through oxidative addition of the terminal C—H bond of alkyne to the Ir complex, followed by the insertion of imine to the resulting Ir-H complex. The crosscoupling reachon of trimethylsilyl (TMS)-acetylene with aldimines took place by [IrCl(cod)]2, leading to the corresponding adducts (Equahon 10.8) [24]. [Pg.255]

Dwell time, or the time the molecule was actually in the lamp unit, and concentration were two parameters that affected the rate of degradation. Mass spectra of the trimethylsilyl (TMS) derivatives of atrazine subjected to UV-ozonation revealed a number of dehalogenated, dealkylated s -triazines, paraquat yielded the 4-picolinic acid, and 2,4-D gave oxalic acid, glycolic acid and several four-carbon oxidation products. The economics of UV-ozonation as a pretreatment for land disposal compares favorably with incineration and other options open to the small pesticide user. [Pg.195]

An example of gas chromatogram for the trimethylsilyl (TMS) derivative of alkali-hydrolyzed TTX is shown in Figure 4. Although a variety of peaks are seen in this chart, only the peak with a retention time of 7.8 min is associated with C -base-(TMS), as evidenced by mass spectroscopy (Figure 5). [Pg.352]


See other pages where Trimethylsilyl = TMS is mentioned: [Pg.77]    [Pg.144]    [Pg.127]    [Pg.273]    [Pg.627]    [Pg.637]    [Pg.20]    [Pg.124]    [Pg.288]    [Pg.341]    [Pg.264]    [Pg.267]    [Pg.250]    [Pg.262]    [Pg.85]    [Pg.124]    [Pg.187]    [Pg.103]    [Pg.117]    [Pg.217]    [Pg.246]    [Pg.341]    [Pg.408]    [Pg.77]    [Pg.130]    [Pg.534]    [Pg.393]    [Pg.498]    [Pg.338]    [Pg.438]    [Pg.26]    [Pg.121]    [Pg.199]    [Pg.60]    [Pg.182]    [Pg.231]    [Pg.827]   


SEARCH



Trimethylsilyl (TMS) Derivatives

Trimethylsilyl (TMS) Ethers

© 2024 chempedia.info