Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Trapped dynamic traps

Rosker M J, Rose T S and Zewail A 1988 Femtosecond real-time dynamics of photofragment-trapping resonances on dissociative potential-energy surfaces Ghem. Phys. Lett. 146 175-9... [Pg.794]

For example, energy transfer in molecule-surface collisions is best studied in nom-eactive systems, such as the scattering and trapping of rare-gas atoms or simple molecules at metal surfaces. We follow a similar approach below, discussing the dynamics of the different elementary processes separately. The surface must also be simplified compared to technologically relevant systems. To develop a detailed understanding, we must know exactly what the surface looks like and of what it is composed. This requires the use of surface science tools (section B 1.19-26) to prepare very well-characterized, atomically clean and ordered substrates on which reactions can be studied under ultrahigh vacuum conditions. The most accurate and specific experiments also employ molecular beam teclmiques, discussed in section B2.3. [Pg.899]

The presence of a precursor breaks the dynamical motion into tliree parts [34], First, there is the dynamics of trapping into the precursor state secondly, there is (at least partial) thennalization in the precursor state and, thirdly, the reaction to produce the desired species (possibly a more tightly bound chemisorbed molecule). [Pg.906]

Otieriched dynam ics can trap structures in local minima. I o prevent this problem, you can cool the system slowly to room temperature or some appropriate lower temperature. I heu run room letTiperature m olecti lar dyn am ics sim ulation s to search for con formations that have lower energies, closer to the starting structure. Cooling a structure slowly is called simulated annealing. [Pg.79]

Dynamic headspace GC/MS. The distillation of volatile and semivolatile compounds into a continuously flowing stream of carrier gas and into a device for trapping sample components. Contents of the trap are then introduced onto a gas chromatographic column. This is followed by mass spectrometric analysis of compounds eluting from the gas chromatograph. [Pg.432]

Detailed reaction dynamics not only require that reagents be simple but also that these remain isolated from random external perturbations. Theory can accommodate that condition easily. Experiments have used one of three strategies. (/) Molecules ia a gas at low pressure can be taken to be isolated for the short time between coUisions. Unimolecular reactions such as photodissociation or isomerization iaduced by photon absorption can sometimes be studied between coUisions. (2) Molecular beams can be produced so that motion is not random. Molecules have a nonzero velocity ia one direction and almost zero velocity ia perpendicular directions. Not only does this reduce coUisions, it also aUows bimolecular iateractions to be studied ia intersecting beams and iacreases the detail with which unimolecular processes that can be studied, because beams facUitate dozens of refined measurement techniques. (J) Means have been found to trap molecules, isolate them, and keep them motionless at a predetermined position ia space (11). Thus far, effort has been directed toward just manipulating the molecules, but the future is bright for exploiting the isolated molecules for kinetic and dynamic studies. [Pg.515]

When a comparative analysis of the headspace volatiles of living and picked osmanthus flowers was performed by the dynamic headspace trapping method using Tenax GC, even more dramatic differences were observed, shown in Table 20 (60). [Pg.317]

In a similar fashion. Thermally Stimulated Current spectrometry (TSC) makes use of an appHed d-c potential that acts as the stress to orient dipoles. The temperature is then lowered to trap these dipoles, and small electrical currents are measured during heating as the dipoles relax. The resulting relaxation maps have been related to G and G" curves obtained by dynamic mechanical analysis (244—246). This technique, long carried out only in laboratory-built instmments, is available as a commercial TSC spectrometer from Thermold Partners L.P., formerly Solomat Instmments (247). [Pg.194]

Lei, S., Shinnar, R. and Katz, S., 1971a. The stability and dynamic behaviour of a continuous crystallizer with a fines trap. American Institute of Chemical Engineers Journal, 17, 1459-1470. [Pg.313]

Figure 7-27 shows the frequency dependency of the in-phase PA bands in a-6T, measured at the maxima of the various PA bands. As expected, the two polaron bands are correlated with one another, having virtually the same dynamics. In contrast, the bipolaron PA band at 1.1 eV is virtually flat from 10 to 1000 Hz, indicating that trapped pol is are longer lived than trapped bipolarons in -6T. The excitation lifetimes modeled by comparing the data in Figure 7-27 to... [Pg.438]

With time-dependent computer simulation and visualization we can give the novices to QM a direct mind s eye view of many elementary processes. The simulations can include interactive modes where the students can apply forces and radiation to control and manipulate atoms and molecules. They can be posed challenges like trapping atoms in laser beams. These simulations are the inside story of real experiments that have been done, but without the complexity of macroscopic devices. The simulations should preferably be based on rigorous solutions of the time dependent Schrddinger equation, but they could also use proven approximate methods to broaden the range of phenomena to be made accessible to the students. Stationary states and the dynamical transitions between them can be presented as special cases of the full dynamics. All these experiences will create a sense of familiarity with the QM realm. The experiences will nurture accurate intuition that can then be made systematic by the formal axioms and concepts of QM. [Pg.27]

The simplified theory is adequate to obtain qualitative agreement with experiment [1,16]. Comparisons between the simplified and more advanced versions of the theory show excellent agreement for the dominant (electronic) contribution to the time-dependent dipole moment, except during the initial excitation, where the k states are coupled by the laser field [17]. The contributions to the dipole from the heavy holes and light holes are not included in the simplified approach. This causes no difficulty in the ADQW because the holes are trapped and do not make a major contribution to the dynamics [1]. This assumption may not be valid in the more general case of superlattices, as discussed below. [Pg.252]

In a more general application, thermoluminescence is used to study mechanisms of defect annealing in crystals. Electron holes and traps, crystal defects, and color-centers are generated in crystals by isotope or X-ray irradiation at low temperatures. Thermoluminescent emission during the warmup can be interpreted in terms of the microenvironments around the various radiation induced defects and the dynamics of the annealing process (117-118). ... [Pg.16]

Of course, the distinction between reactive- and bound-state wave functions becomes blurred when one considers very long-lived reactive resonances, of the sort considered in Section IV.B, which contain Feynman paths that loop many times around the CL Such a resonance, which will have a very narrow energy width, will behave almost like a bound-state wave function when mapped onto the double space, since e will be almost equal to Fo - The effect of the GP boundary condition would be therefore simply to shift the energies and permitted nodal structures of the resonances, as in a bound-state function. For short-lived resonances, however, Te and To will differ, since they will describe the different decay dynamics produced by the even and odd n Feynman paths separating them will therefore reveal how this dynamics is changed by the GP. The same is true for resonances which are long lived, but which are trapped in a region of space that does not encircle the Cl, so that the decay dynamics involves just a few Feynman loops around the CL... [Pg.38]

Direct dynamics trajectory calculations at the MP2/6-31-FG level of theory were then used to explore the reaction dynamics of this system [63]. Sixty-four trajectories were started from the central barrier shown at A in Fig. 11, with initial conditions sampled from a 300 K Boltzmann distribution. Of the 31 trajectories that moved in the direction of products, four trajectories followed the MEP and became trapped in the hydrogen-bonded [CH3OH ... [Pg.247]


See other pages where Trapped dynamic traps is mentioned: [Pg.180]    [Pg.339]    [Pg.112]    [Pg.506]    [Pg.900]    [Pg.903]    [Pg.913]    [Pg.913]    [Pg.1028]    [Pg.1548]    [Pg.1744]    [Pg.2472]    [Pg.305]    [Pg.634]    [Pg.645]    [Pg.167]    [Pg.120]    [Pg.541]    [Pg.542]    [Pg.395]    [Pg.767]    [Pg.681]    [Pg.131]    [Pg.135]    [Pg.422]    [Pg.336]    [Pg.86]    [Pg.159]    [Pg.689]    [Pg.5]    [Pg.16]    [Pg.377]    [Pg.120]    [Pg.133]    [Pg.146]   
See also in sourсe #XX -- [ Pg.339 ]




SEARCH



Dynamic Headspace Technique (Purge and Trap)

Dynamic trapping

Dynamical trapping

Dynamical trapping

Purge and trap (dynamic headspace)

Trapped ions dynamics

Trapping above the potential barrier Time-delay in reaction dynamics

© 2024 chempedia.info