Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Transverse vibration, lattice dynamics

From the lattice dynamics viewpoint a transition to the ferroelectric state is seen as a limiting case of a transverse optical mode, the frequency of which is temperature dependent. If, as the temperature falls, the force constant controlling a transverse optical mode decreases, a temperature may be reached when the frequency of the mode approaches zero. The transition to the ferroelectric state occurs at the temperature at which the frequency is zero. Such a vibrational mode is referred to as a soft mode . [Pg.60]

Conventional infrared spectra of powdery materials are very often used for studying solid hydrates in terms of sample characterization (fingerprints), phase transitions, and both structural and bonding features. For the latter objects mostly deuteration experiments are included. However, it must be born in mind that the band frequencies observed (except those of isotopically dilute samples (see Sect. 2.6)) are those of surface modes rather than due to bulk vibrations, i.e., the transverse optical phonon modes, and, hence, not favorably appropriate for molecular and lattice dynamic calculations. [Pg.100]

In molecular crystals or in crystals composed of complex ions it is necessary to take into account intramolecular vibrations in addition to the vibrations of the molecules with respect to each other. If both modes are approximately independent, the former can be treated using the Einstein model. In the case of covalent molecules specifically, it is necessary to pay attention to internal rotations. The behaviour is especially complicated in the case of the compounds discussed in Section 2.2.6. The pure lattice vibrations are also more complex than has been described so far . In addition to (transverse and longitudinal) acoustical phonons, i.e. vibrations by which the constituents are moved coherently in the same direction without charge separation, there are so-called optical phonons. The name is based on the fact that the latter lattice vibrations are — in polar compounds — now associated with a change in the dipole moment and, hence, with optical effects. The inset to Fig. 3.1 illustrates a real phonon spectrum for a very simple ionic crystal. A detailed treatment of the lattice dynamics lies outside the scope of this book. The formal treatment of phonons (cf. e(k), D(e)) is very similar to that of crystal electrons. (Observe the similarity of the vibration equation to the Schrodinger equation.) However, they obey Bose rather than Fermi statistics (cf. page 119). [Pg.70]

Of central importance for understanding the fundamental properties of ferroelec-trics is dynamics of the crystal lattice, which is closely related to the phenomenon of ferroelectricity [1]. The soft-mode theory of displacive ferroelectrics [65] has established the relationship between the polar optical vibrational modes and the spontaneous polarization. The lowest-frequency transverse optical phonon, called the soft mode, involves the same atomic displacements as those responsible for the appearance of spontaneous polarization, and the soft mode instability at Curie temperature causes the ferroelectric phase transition. The soft-mode behavior is also related to such properties of ferroelectric materials as high dielectric constant, large piezoelectric coefficients, and dielectric nonlinearity, which are extremely important for technological applications. The Lyddane-Sachs-Teller (LST) relation connects the macroscopic dielectric constants of a material with its microscopic properties - optical phonon frequencies ... [Pg.589]


See other pages where Transverse vibration, lattice dynamics is mentioned: [Pg.73]    [Pg.217]    [Pg.7152]    [Pg.299]    [Pg.335]    [Pg.219]    [Pg.499]    [Pg.429]    [Pg.27]    [Pg.94]    [Pg.95]   
See also in sourсe #XX -- [ Pg.135 ]




SEARCH



Transverse lattice vibrations

Vibrational dynamics

Vibrations transverse

© 2024 chempedia.info