Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Transport properties density

Mechanical, Thermal, and Transport Properties Density and Thermal Expansion... [Pg.19]

A paiticularly attiactive and useful feature of supeicritical fluids is that these materials can have properties somewhere between those of a gas and a hquid (Table 2). A supercritical fluid has more hquid-hke densities, and subsequent solvation strengths, while possessiag transport properties, ie, viscosities and diffusivities, that are more like gases. Thus, an SCF may diffuse iato a matrix more quickly than a Hquid solvent, yet still possess a Hquid-like solvent strength for extracting a component from the matrix. [Pg.221]

Generalized charts are appHcable to a wide range of industrially important chemicals. Properties for which charts are available include all thermodynamic properties, eg, enthalpy, entropy, Gibbs energy and PVT data, compressibiUty factors, Hquid densities, fugacity coefficients, surface tensions, diffusivities, transport properties, and rate constants for chemical reactions. Charts and tables of compressibiHty factors vs reduced pressure and reduced temperature have been produced. Data is available in both tabular and graphical form (61—72). [Pg.239]

Transport Properties Although the densities of supercritical fluids approach those of conventional hquids, their transport properties are closer to those of gases, as shown for a typical SCF such as CO9 in Table 22-12. For example, the viscosity is several orders of magnitude lower than at liquidlike conditions. The self-diffusion coefficient ranges between 10" and 10" em /s, and binaiy-diffusiou coefficients are similar [Liong, Wells, and Foster, J. Supercritical Fluids 4, 91 (1991) Catchpole and King, Ind. Eng. Chem. Research, 33,... [Pg.2001]

TABLE 22-12 Density and Transport Properties of a GaS/ Supercritical Fluid/ and a Liquid... [Pg.2001]

The heat transfer coefficient is correlated experimentally with the fluid transport properties (specific heat, viscosity, thermal conductivity and density), fluid velocity and the geometrical relationship between surface and fluid flow. [Pg.346]

MIM or SIM [82-84] diodes to the PPV/A1 interface provides a good qualitative understanding of the device operation in terms of Schottky diodes for high impurity densities (typically 2> 1017 cm-3) and rigid band diodes for low impurity densities (typically<1017 cm-3). Figure 15-14a and b schematically show the two models for the different impurity concentrations. However, these models do not allow a quantitative description of the open circuit voltage or the spectral resolved photocurrent spectrum. The transport properties of single-layer polymer diodes with asymmetric metal electrodes are well described by the double-carrier current flow equation (Eq. (15.4)) where the holes show a field dependent mobility and the electrons of the holes show a temperature-dependent trap distribution. [Pg.281]

All the transport properties derive from the thermal agitation of species at the atomic scale. In this respect, the simplest phenomenon is the diffusion process. In fact, as a consequence of thermal kinetic energy, all particles are subjected to a perfectly random movement, the velocity vector having exactly the same probability as orientation in any direction of the space. In these conditions, the net flux of matter in the direction of the concentration gradient is due only to the gradient of the population density. [Pg.120]

Some 30 years ago, transport properties of molten salts were reviewed by Janz and Reeves, who described classical experimental techniques for measuring density, electrical conductance, viscosity, transport number, and self-diffusion coefficient. [Pg.124]

G. J. Janz, J. Phys. Chem. Ref Data 17, Supplement (1988) Thermodynamic and Transport Properties for Molten Salts Correlation Equations for Critically Evaluated Density, Surface Tension, Eleetrieal Conduetance and Viseosity Data, American Chemical Society-American Institute of Physics-National Bureau of Standards, Washington, DC, 1988. [Pg.198]

Transport Properties Although the densities of SCFs can approach those of conventional liquids, transport properties are more favorable because viscosities remain lower and diffusion coefficients remain higher. Furthermore, CO2 diffuses through condensed-liquid phases (e.g., adsorbents and polymers) faster than do typical solvents which have larger molecular sizes. For example, at 35°C the estimated pyrene diffusion coefficient in polymethylmethacrylate increases by 4 orders of magnitude when the CO2 content is increased from 8 to 17 wt % with pressure [Cao, Johnston, and Webber, Macromolecules, 38(4), 1335-1340 (2005)]. [Pg.15]

The term limiting-current density is used to describe the maximum rate at 100% current efficiency, at which a particular electrode reaction can proceed in the steady state. This rate is determined by the composition and transport properties of the electrolytic solution and by the hydrodynamic condition at the electrode surface. [Pg.213]

Liquid 4He, above 2.2 K (He I), because of its low density, shows transport properties similar to those of a classic gas (Fig. 2.12). The same happens for 3He above 0.1 K. Above the A-point, 4He has a low thermal conductivity (a factor of 10-4 compared to Cu and a factor of 10-1 compared to stainless steel) and boils with strong bubbling. [Pg.66]

In the early 1970s, Spear and coworkers (Spear, 1974 Le Comber et al., 1974), although unaware of the presence of hydrogen, demonstrated a substantial reduction in the density of gap states (with a corresponding improvement in the electronic transport properties) in amorphous silicon films that were deposited from the decomposition of silane (SiH4) in an rf glow discharge. [Pg.17]

Excellent electron-transporting properties of quinoxaline (also demonstrated for noncon-jugated quinoxaline-containing polymer 588 [684] and quinoxaline-based polyether 589 [685]) resulted in a substantially decreased turn-on voltage of PPV/590 PLED (3.6 V), which is much lower than that of pure PPV in the same conditions (7 V). These diodes showed a maximum luminance of 710 cd/m2 (ca. 40 times brighter than the PPV diode at the same current density and voltage) [686]. [Pg.236]

Monte Carlo and Molecular Dynamics simulations of water near hydrophobic surfaces have yielded a wealth of information about the structure, thermodynamics and transport properties of interfacial water. In particular, they have demonstrated the presence of molecular layering and density oscillations which extend many Angstroms away from the surfaces. These oscillations have recently been verified experimentally. Ordered dipolar orientations and reduced dipole relaxation times are observed in most of the simulations, indicating that interfacial water is not a uniform dielectric continuum. Reduced dipole relaxation times near the surfaces indicate that interfacial water experiences hindered rotation. The majority of simulation results indicate that water near hydrophobic surfaces exhibits fewer hydrogen bonds than water near the midplane. [Pg.32]

In PEMFCs, Ralph et al. [86] tested a Ballard Mark V single cell with two different DLs a carbon cloth (Zoltek PWB-3) and a carbon fiber paper (Toray TGP-090) all the other operating conditions stayed the same for bofh cases. It was observed that the carbon cloth demonstrated a distinct advantage over the CFP at high current densities (>600 mA/cm ), while at low current densities both DLs performed similarly. If was claimed fhaf this was because the CC material enhanced mass transport properties and improved the water management within the cell due to its porosity and hydrophobicity. [Pg.224]

Transport properties of hydrated PFSA membranes strongly depend on nanophase-segregated morphology, water content, and state of water. In an operational fuel cell, these characteristics are indirectly determined by the humidity level of the reactant streams and Faradaic current densities generated in electrodes, as well as the transport properhes of catalyst layers, gas diffusion layers, and flow... [Pg.359]

In reality, this behavior is only observed in the limit of small jg. At currents o 1 A cm-2 that are relevant for fuel cell operation, the electro-osmotic coupling between proton and water fluxes causes nonuniform water distributions in PEMs, which lead to nonlinear effects in r/p M- These deviations result in a critical current density, p at which the increase in r/pp j causes the cell voltage to decrease dramatically. It is thus crucial to develop membrane models that can predicton the basis of experimental data on structure and transport properties. [Pg.397]


See other pages where Transport properties density is mentioned: [Pg.724]    [Pg.1904]    [Pg.2000]    [Pg.451]    [Pg.455]    [Pg.545]    [Pg.182]    [Pg.43]    [Pg.14]    [Pg.7]    [Pg.113]    [Pg.148]    [Pg.138]    [Pg.161]    [Pg.662]    [Pg.33]    [Pg.157]    [Pg.52]    [Pg.738]    [Pg.218]    [Pg.296]    [Pg.314]    [Pg.229]    [Pg.542]    [Pg.169]    [Pg.21]    [Pg.421]    [Pg.123]    [Pg.265]    [Pg.174]   
See also in sourсe #XX -- [ Pg.33 ]




SEARCH



Densities, viscosities, and transport properties

Transport properties

Transport properties density expansion

Transporters properties

© 2024 chempedia.info