Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Transition metals hydrosilylation with catalyst

Alkenes. Most Group VIII metals, metal salts, and complexes may be used as catalyst in hydrosilylation of alkenes. Platinum and its derivatives show the highest activity. Rhodium, nickel, and palladium complexes, although less active, may exhibit unique selectivities. The addition is exothermic and it is usually performed without a solvent. Transition-metal complexes with chiral ligands may be employed in asymmetric hydrosilylation 406,422... [Pg.323]

The idea that transition metal complexes with metals in high formal oxidation states could catalyze reactions that are formaiiy reductions was reported for the first time in relation with hydrosilylation of aldehydes or ketones promoted by Re(V) catalysts [1-3], The traditional mechanism for hydrosilylation reactions started with an oxidative addition reaction of the bond to the metal, increasing its formal oxidation state by two units. Even though Re(V) can be oxidized to Re(VII), both experimental and computational studies proved that the mechanism was a different one, involving a [2+2] addition to a Re=0 bond [3-5]. [Pg.305]

Organosilicon compounds are widely used in our daily life as oil, grease, rubbers, cosmetics, medicinal chemicals, etc. However, these compounds are not naturally occurring substances but artificially produced ones (for reviews of organosilicon chemistry, see [59-64]). Hydrosilylation reactions catalyzed by a transition-metal catalyst are one of the most powerful tools for the synthesis of organosilicon compounds. Reaction of an unsaturated C-C bond such as alkynes or alkenes with hydrosilane affords a vinyl- or alkylsilane, respectively (Scheme 16). [Pg.44]

The discussion of the activation of bonds containing a group 15 element is continued in chapter five. D.K. Wicht and D.S. Glueck discuss the addition of phosphines, R2P-H, phosphites, (R0)2P(=0)H, and phosphine oxides R2P(=0)H to unsaturated substrates. Although the addition of P-H bonds can be sometimes achieved directly, the transition metal-catalyzed reaction is usually faster and may proceed with a different stereochemistry. As in hydrosilylations, palladium and platinum complexes are frequently employed as catalyst precursors for P-H additions to unsaturated hydrocarbons, but (chiral) lanthanide complexes were used with great success for the (enantioselective) addition to heteropolar double bond systems, such as aldehydes and imines whereby pharmaceutically valuable a-hydroxy or a-amino phosphonates were obtained efficiently. [Pg.289]

The mechanism for the reaction catalyzed by cationic palladium complexes (Scheme 24) differs from that proposed for early transition metal complexes, as well as from that suggested for the reaction shown in Eq. 17. For this catalyst system, the alkene substrate inserts into a Pd - Si bond a rather than a Pd-H bond [63]. Hydrosilylation of methylpalladium complex 100 then provides methane and palladium silyl species 112 (Scheme 24). Complex 112 coordinates to and inserts into the least substituted olefin regioselectively and irreversibly to provide 113 after coordination of the second alkene. Insertion into the second alkene through a boat-like transition state leads to trans cyclopentane 114, and o-bond metathesis (or oxidative addition/reductive elimination) leads to the observed trans stereochemistry of product 101a with regeneration of 112 [69]. [Pg.241]

Transition-metal chemistry is currently one of the most rapidly developing research areas. The record of investigation for compounds with metal silicon bonds is closely comparable to that for silicones it was in 1941 when Hein discovered the first metal silicon complex, followed by Wilkinson in 1956. A milestone in the development of this chemistry was Speier s discovery of the catalytic activity of nobel metal complexes in hydrosilylation reactions in 1977. Hydrosilylation is widely used in modem organic syntheses as well as in the preparation of organo functionalized silicones. Detailed investigations of the reaction mechanisms of various catalysts continue to be subject of intense research efforts. [Pg.167]

In 1985, Hiyama and co-workers reported the hydrosilylation of l,4-bis(trimethylsi-lyl)-l,3-butadiyne (131a) [107, 108], In the presence of transition metal catalysts, double hydrosilylation proceeded in a stepwise manner and tetrasilylallenes (134) were obtained with a proper choice of the catalyst and hydrosilane (Scheme 3.67). [Pg.121]

The hydrosilylation of l,4-bis(trimethylsilyl)but-3-en-l-yne (141) was beautifully controlled and four different isomeric products could be prepared independently with 93-96% selectivity by a proper choice of geometric isomers of 141 and transition metal catalysts [113]. One of the four products from the reaction of 141 with 132p was allene 142, which was obtained as a mixture (142 143 = 96 4) in 93% yield (Scheme 3.73). [Pg.124]

Dienes are less reactive toward transition metals than enynes and diynes, and perhaps for this reason, the development of effective catalyst systems for the cyclization/hydrosilylation of dienes lagged behind development of the corresponding procedures for enynes and diynes. The transition metal-catalyzed cyclization/hydrosilylation of dienes was first demonstrated by Tanaka and co-workers in 1994. Reaction of 1,5-hexadiene with phenyl-silane catalyzed by the highly electrophilic neodymium metallocene complex Cp 2NdCH(SiMe2)3 (1 mol%) in benzene at room temperature for 3 h led to 5- ///76 -cyclization and isolation of (cyclopentylmethyl)phenylsilane in 84% yield (Equation (15)). In comparison, neodymium-catalyzed reaction of 1,6-heptadiene with phenylsilane led to 5- X(9-cyclization to form (2-methylcyclopentylmethyl)phenylsilane in 54% yield as an 85 15 mixture of trans. cis isomers (Equation (16)). [Pg.379]

The most notable point of this reaction is that the internal sp-c xhon is selectively carbonylated to form (Z)-14a predominantly, although the ZjE ratio is likely to depend on reaction temperature, time, and catalyst precursor. It is revealed that the stereochemistry of the transition metal-catalyzed addition to alkynes is intrinsically cis. Isomerization from (Z)-14a to ( )-14a proceeds as an independent event from silylformylation. This feature sharply contrasts to the results observed in hydrosilylation of 13 with Me2PhSiH (Equation (3)). ... [Pg.475]

In this chapter, recent advances in asymmetric hydrosilylations promoted by chiral transition-metal catalysts will be reviewed, which attained spectacular increase in enantioselectivity in the 1990s [1], After our previous review in the original Catalytic Asymmetric Synthesis, which covered literature through the end of 1992 [2], various chiral Pn, Nn, and P-N type ligands have been developed extensively with great successes. In addition to common rhodium and palladium catalysts, other new chiral transition-metal catalysts, including Ti and Ru complexes, have emerged. This chapter also discusses catalytic hydrometallation reactions other than hydrosily-lation such as hydroboration and hydroalumination. [Pg.111]

ASYMMETRIC HYDROSILYLATION OF OLEFINS WITH TRANSITION-METAL CATALYSTS 127... [Pg.127]


See other pages where Transition metals hydrosilylation with catalyst is mentioned: [Pg.217]    [Pg.214]    [Pg.217]    [Pg.24]    [Pg.298]    [Pg.298]    [Pg.286]    [Pg.73]    [Pg.74]    [Pg.77]    [Pg.288]    [Pg.238]    [Pg.269]    [Pg.498]    [Pg.790]    [Pg.800]    [Pg.815]    [Pg.815]    [Pg.411]    [Pg.224]    [Pg.87]    [Pg.346]    [Pg.297]    [Pg.855]    [Pg.668]    [Pg.203]    [Pg.131]    [Pg.139]    [Pg.1688]    [Pg.1689]    [Pg.1697]    [Pg.1697]    [Pg.1697]    [Pg.1699]    [Pg.1703]    [Pg.1717]   
See also in sourсe #XX -- [ Pg.463 ]

See also in sourсe #XX -- [ Pg.463 ]




SEARCH



Hydrosilylation catalysts

Transition catalyst

With Transition Metals

With transition metal catalysts

© 2024 chempedia.info