Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hydrometalation catalytic

Detailed mechanistic study on these intramolecular hydrosilylation of allylic O-silyl ethers 59 and allylic A -silylamincs 63 using deuterium labeling techniques shows that 5-endo cyclization giving 60 or 64 proceeds via a Chalk-Harrod type hydrometalation catalytic cycle, while 4-exo cyclization process yielding 61 or 65 includes a Seitz-Wrighton type silylmetalation mechanism89. [Pg.1711]

Palladium complexes are effective catalysts for the reductive cydization of enyne substrates [53,54], The first report of catalytic cydization of 1,6- and 1,7-enynes 115a,b to cyclopentane 116a and cyclohexane 116b derivatives appeared in 1987 (Eq. 19) [70]. The authors proposed that the Pd(II) species 117 forms by oxidative addition of acetic acid to Pd(0) (Scheme 25). Complex 117 hydrometallates the alkyne to give 118, which cyclizes to provide... [Pg.241]

The results shown in Scheme 26 are consistent with the mechanism shown in Scheme 27. Alkyne hydrometallation by catalytic intermediate A and... [Pg.244]

Richard J. Quann, Robert A. Ware, Chi-Wen Hung, and James Wei, Catalytic Hydrometallation of Petroleum... [Pg.229]

The palladium-catalyzed hydrostannylative cyclization of enynes is dealt with first, since mechanistically it is closely related to hydrometallation. Lautens262 reported the formation of homoallyl stannanes through the reaction of 1,6-enynes with tributyltin hydride in the presence of a catalytic amount of Pd(OAc)2.263 The active catalytic species is... [Pg.333]

A mechanism was proposed in which entry into the catalytic cycle is achieved via Et2AlCl-mediated cobalt hydride generation. Diene hydrometallation affords the cobalt-complexed -jr-allyl A-5, which inserts the tethered alkene to furnish intermediate B-4. Elimination of LnCoOBn provides the cyclization product. Reduction of LnCoOBn by Et2AlCl regenerates cobalt hydride to complete the catalytic cycle (Scheme 17). [Pg.502]

To probe the reaction mechanism of the silane-mediated reaction, EtjSiD was substituted for PMHS in the cyclization of 1,6-enyne 34a.5 The mono-deuterated reductive cyclization product 34b was obtained as a single diastereomer. This result is consistent with entry of palladium into the catalytic cycle as the hydride derived from its reaction with acetic acid. Alkyne hydrometallation provides intermediate A-7, which upon cw-carbopalladation gives rise to cyclic intermediate B-6. Delivery of deuterium to the palladium center provides C-2, which upon reductive elimination provides the mono-deuterated product 34b, along with palladium(O) to close the catalytic cycle. The relative stereochemistry of 34b was not determined but was inferred on the basis of the aforementioned mechanism (Scheme 24). [Pg.506]

It is postulated that the mechanism of the silane-mediated reaction involves silane oxidative addition to nickel(O) followed by diene hydrometallation to afford the nickel -jr-allyl complex A-16. Insertion of the appendant aldehyde provides the nickel alkoxide B-12, which upon oxygen-silicon reductive elimination affords the silyl protected product 71c along with nickel(O). Silane oxidative addition to nickel(O) closes the catalytic cycle. In contrast, the Bu 2Al(acac)-mediated reaction is believed to involve a pathway initiated by oxidative coupling of the diene and... [Pg.522]

Recently, another type of catalytic cycle for the hydrosilylation has been reported, which does not involve the oxidative addition of a hydrosilane to a low-valent metal. Instead, it involves bond metathesis step to release the hydrosilylation product from the catalyst (Scheme 2). In the cycle C, alkylmetal intermediate generated by hydrometallation of alkene undergoes the metathesis with hydrosilane to give the hydrosilylation product and to regenerate the metal hydride. This catalytic cycle is proposed for the reaction catalyzed by lanthanide or a group 3 metal.20 In the hydrosilylation with a trialkylsilane and a cationic palladium complex, the catalytic cycle involves silylmetallation of an alkene and metathesis between the resulting /3-silylalkyl intermediate and hydrosilane (cycle D).21... [Pg.816]

For use of alkynes as nucleophilic partners in catalytic hydrometallative reductive couplings to aldehydes, see ... [Pg.737]

Yttrium-catalyzed diene cyclization/hydrosilylation was applied to the synthesis of aliphatic nitrogen heterocycles such as the indolizidine alkaloid ( )-epilupinine. l-Allyl-2-vinylpiperidine 30 was synthesized in four steps in 59% overall yield from commercially available ( )-2-piperidinemethanol (Scheme 10). Treatment of 30 with phenylsilane and a catalytic amount of Gp 2YGH3(THF) gave silylated quinolizidine derivative 31 in 84% yield, resulting from selective hydrometallation of the A-allyl G=G bond in preference to the exocyclic vinylic G=G bond. Oxidation of the crude reaction mixture with tert-huVf hydrogen peroxide and potassium hydride gave (i)-epilupinine in 51-62% yield from 30 (Scheme 10). [Pg.381]

In this chapter, recent advances in asymmetric hydrosilylations promoted by chiral transition-metal catalysts will be reviewed, which attained spectacular increase in enantioselectivity in the 1990s [1], After our previous review in the original Catalytic Asymmetric Synthesis, which covered literature through the end of 1992 [2], various chiral Pn, Nn, and P-N type ligands have been developed extensively with great successes. In addition to common rhodium and palladium catalysts, other new chiral transition-metal catalysts, including Ti and Ru complexes, have emerged. This chapter also discusses catalytic hydrometallation reactions other than hydrosily-lation such as hydroboration and hydroalumination. [Pg.111]

Addition of hydrosilane to alkenes, dienes and alkynes is called hydrosilylation, or hydrosilation, and is a commercially important process for the production of many organosilicon compounds. As related reactions, silylformylation of alkynes is treated in Section 7.1.2, and the reduction of carbonyl compounds to alcohols by hydrosilylation is treated in Section 10.2. Compared with other hydrometallations discussed so far, hydrosilylation is sluggish and proceeds satisfactorily only in the presence of catalysts [214], Chloroplatinic acid is the most active catalyst and the hydrosilylation of alkenes catalysed by E PtCU is operated commercially [215]. Colloidal Pt is said to be an active catalytic species. Even the internal alkenes 558 can be hydrosilylated in the presence of a Pt catalyst with concomitant isomerization of the double bond from an internal to a terminal position to give terminal silylalkanes 559. The oxidative addition of hydrosilane to form R Si—Pt—H 560 is the first step of the hydrosilylation, and insertion of alkenes to the Pt—H bond gives 561, and the alkylsilane 562 is obtained by reductive elimination. [Pg.289]

Considering the mechanistic rationales of the transition metal-catalyzed enyne cycloisomerization, different catalytic pathways have been proposed, depending on the reaction conditions and the choice of metal catalyst [3-5, 45], Complexation of the transition metal to alkene or alkyne moieties can activate one or both of them. Depending on the manner of formation of the intermediates, three major mechanisms have been proposed. The simultaneous coordination of both unsaturated bonds to the transition metal led to the formation of metallacydes, which is the most common pathway in transition metal-catalyzed cycloisomerization reactions. Hydrometalation of the alkyne led to the corresponding vinylmetal species, which reacts in turn with olefins via carbometalation. The last possible pathway involves the formation of a Jt-allyl complex which could further react with the alkyne moiety. The Jt-allyl complex could be formed either with a functional group at the allylic position or via direct C-H activation. Here the three major pathways will be discussed in a generalized form to illustrate the mechanisms (Scheme 8). [Pg.460]


See other pages where Hydrometalation catalytic is mentioned: [Pg.167]    [Pg.74]    [Pg.256]    [Pg.89]    [Pg.90]    [Pg.91]    [Pg.94]    [Pg.109]    [Pg.134]    [Pg.329]    [Pg.497]    [Pg.500]    [Pg.518]    [Pg.521]    [Pg.815]    [Pg.713]    [Pg.726]    [Pg.727]    [Pg.729]    [Pg.734]    [Pg.737]    [Pg.738]    [Pg.103]    [Pg.640]    [Pg.345]    [Pg.175]    [Pg.434]    [Pg.306]    [Pg.461]    [Pg.815]   
See also in sourсe #XX -- [ Pg.254 ]

See also in sourсe #XX -- [ Pg.254 ]




SEARCH



Hydrometalation

Hydrometalations

Hydrometallation

Hydrometallation catalytic

Hydrometallization

© 2024 chempedia.info