Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Transition metal diffraction studies

Neutron diffraction studies have shown that in both systems Pd-H (17) and Ni-H (18) the hydrogen atoms during the process of hydride phase formation occupy octahedral positions inside the metal lattice. It is a process of ordering of the dissolved hydrogen in the a-solid solution leading to a hydride precipitation. In common with all other transition metal hydrides these also are of nonstoichiometric composition. As the respective atomic ratios of the components amount to approximately H/Me = 0.6, the hydrogen atoms thus occupy only some of the crystallographic positions available to them. [Pg.250]

Bond length differences between HS and LS isomers have been determined for a number of iron(II), iron(III) and cobalt(II) complexes on the basis of multiple temperature X-ray diffraction structure studies [6]. The available results have been collected in Table 17. Average values for the bond length changes characteristic for a particular transition-metal ion have been extracted from these data and are obtained as AR 0.17 A for iron(II) complexes, AR 0.13 A for iron(III) complexes, and AR = 0.06 A for cobalt(II) complexes. These values may be compared with the differences of ionic radii between the HS and LS forms of iron(II), iron(III) and cobalt(II) which were estimated some time ago [184] as 0.16, 0.095, and 0.085 A, respectively. [Pg.138]

Open chain polyamine ligands have been widely studied. Often the coordination of zinc is compared with other first row transition metals and factors, such as behavior across a pH range, studied. The protonation patterns and stability constants are of particular interest. Octahedral zinc tris(ethylenediamine) structures have been characterized by X-ray diffraction with a number of different counter anions.94 The X-ray structure of zinc tris(ethylenediamine) with fluoride counter ions reveals extensive hydrogen bonding.95... [Pg.1153]

Since the unpaired electron in transition metal complexes is generally localized near the central ion and the ligand atoms in the first coordination sphere, summation in (5.5) over these nuclei is often sufficient. In this approximated form, the point-dipole model has frequently been applied in ENDOR studies of transition metal complexes to determine the proton positions from their hfs tensors (Sect. 6). In some cases the accuracy of this method has turned out to be significantly higher than that of an X-ray diffraction analysis62,130 131). [Pg.51]

Bond Distances (A) in the [M-Oel Cores of the Late Transition Metal-Oxo (LTMO) Complexes to Date (M = Pt, Pd and Au) from X-ray Diffraction Studies... [Pg.259]

Finally, Al (/= 5/2) and Co NMR spectroscopy have been used to probe AP+ in Al-doped lithium cobalt oxides and lithium nickel oxides. A Al chemical shift of 62.5 ppm was observed for the environment Al(OCo)e for an AP+ ion in the transition-metal layers, surrounded by six Co + ions. Somewhat surprisingly, this is in the typical chemical shift range expected for tetrahedral environments (ca. 60—80 ppm), but no evidence for occupancy of the tetrahedral site was obtained from X-ray diffraction and IR studies on the same materials. Substitution of the Co + by AF+ in the first cation coordination shell leads to an additive chemical shift decrease of ca. 7 ppm, and the shift of the environment A1(0A1)6 (20 ppm) seen in spectra of materials with higher A1 content is closer to that expected for octahedral Al. The spectra are consistent with a continuous solid solution involving octahedral sites randomly occupied by Al and Co. It is possible that the unusual Al shifts seen for this compound are related to the Van-Vleck susceptibility of this compound. [Pg.267]

For the purposes of this chapter, which focuses on comparisons of isocyanide binding in transition metal complexes and isocyanide adsorption on metal surfaces, we first summarize known modes of isocyanide binding to one, two and three metals in their complexes. In such complexes, detailed structural features of isocyanide attachment to the metals have been established by single-crystal X-ray diffraction studies. On the other hand, modes of isocyanide attachment to metal atoms on metal surfaces are proposed on the basis of comparisons of spectroscopic data for adsorbed isocyanides with comparable data for isocyanides in metal complexes with known modes of isocyanide attachment. [Pg.513]

Reaction 5.45 is at least partly hypothetical. Evidence that the Cl does react with the Na component of the alanate to form NaCl was found by means of X-ray diffraction (XRD), but the final form of the Ti catalyst is not clear [68]. Ti is probably metallic in the form of an alloy or intermetallic compound (e.g. with Al) rather than elemental. Another possibility is that the transition metal dopant (e.g. Ti) actually does not act as a classic surface catalyst on NaAlH4, but rather enters the entire Na sublattice as a variable valence species to produce vacancies and lattice distortions, thus aiding the necessary short-range diffusion of Na and Al atoms [69]. Ti, derived from the decomposition of TiCU during ball-milling, seems to also promote the decomposition of LiAlH4 and the release of H2 [70]. In order to understand the role of the catalyst, Sandrock et al. performed detailed desorption kinetics studies (forward reactions, both steps, of the reaction) as a function of temperature and catalyst level [71] (Figure 5.39). [Pg.147]


See other pages where Transition metal diffraction studies is mentioned: [Pg.6110]    [Pg.6109]    [Pg.227]    [Pg.214]    [Pg.216]    [Pg.157]    [Pg.133]    [Pg.142]    [Pg.291]    [Pg.158]    [Pg.143]    [Pg.240]    [Pg.584]    [Pg.691]    [Pg.1193]    [Pg.84]    [Pg.92]    [Pg.21]    [Pg.232]    [Pg.394]    [Pg.556]    [Pg.284]    [Pg.64]    [Pg.58]    [Pg.156]    [Pg.157]    [Pg.274]    [Pg.34]    [Pg.167]    [Pg.168]    [Pg.13]    [Pg.191]    [Pg.48]    [Pg.49]    [Pg.265]    [Pg.23]    [Pg.20]    [Pg.26]    [Pg.31]    [Pg.37]    [Pg.84]    [Pg.36]    [Pg.274]   


SEARCH



Transitional studies

© 2024 chempedia.info