Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Transition metal catalytic oxidation methods

Abstract This review summarizes the current status of transition metal catalyzed reactions involving radical intermediates in organic chemistry. This part focuses on radical-based methods catalyzed by group 10 and group 11 metal complexes. Reductive and redox-neutral C-C bond formations catalyzed by low-valent metal complexes as well as catalytic oxidative methods are reviewed. Catalytic processes which rely on the combination of two metal complexes are also covered. [Pg.323]

A review of recent advances in transition-metal-catalysed oxidations by molecular oxygen has highlighted the scope and limitations, as well as the meehanisms of these reactions. " " An overview of the fundamental studies on a new method of synthesis of nicotinic acid by the gas-phase catalytic oxidation of -picoline by oxygen has been presented. The reactivity of vanadium species has been considered in order to discover the nature of the active catalyst. Kinetic equations for -picoline oxidation on vanadia-titania catalysts have been discussed. " The effect of quaternary ammonium salts or macrocyclic ethers on the autoxidation of ethylbenzene or the decomposition of the a-phenylethyl hydroperoxide intermediate catalysed by Ni(II) or Fe(III) acetylacetonates has been reviewed. ... [Pg.126]

It is necessary to note the limitation of the approach to the study of the polymerization mechanism, based on a formal comparison of the catalytic activity with the average oxidation degree of transition metal ions in the catalyst. The change of the activity induced by some factor (the catalyst composition, the method of catalyst treatment, etc.) was often assumed to be determined only by the change of the number of active centers. Meanwhile, the activity (A) of the heterogeneous polymerization catalyst depends not only on the surface concentration of the propagation centers (N), but also on the specific activity of one center (propagation rate constant, Kp) and on the effective catalyst surface (Sen) as well ... [Pg.176]

Phenol is the starting material for numerous intermediates and finished products. About 90% of the worldwide production of phenol is by Hock process (cumene oxidation process) and the rest by toluene oxidation process. Both the commercial processes for phenol production are multi step processes and thereby inherently unclean [1]. Therefore, there is need for a cleaner production method for phenol, which is economically and environmentally viable. There is great interest amongst researchers to develop a new method for the synthesis of phenol in a one step process [2]. Activated carbon materials, which have large surface areas, have been used as adsorbents, catalysts and catalyst supports [3,4], Activated carbons also have favorable hydrophobicity/ hydrophilicity, which make them suitable for the benzene hydroxylation. Transition metals have been widely used as catalytically active materials for the oxidation/hydroxylation of various aromatic compounds. [Pg.277]

One-electron reduction or oxidation of organic compounds provides a useful method for the generation of anion radicals or cation radicals, respectively. These methods are used as key processes in radical reactions. Redox properties of transition metals can be utilized for the efficient one-electron reduction or oxidation (Scheme 1). In particular, the redox function of early transition metals including titanium, vanadium, and manganese has been of synthetic potential from this point of view [1-8]. The synthetic limitation exists in the use of a stoichiometric or excess amount of metallic reductants or oxidants to complete the reaction. Generally, the construction of a catalytic redox cycle for one-electron reduction is difficult to achieve. A catalytic system should be constructed to avoid the use of such amounts of expensive and/or toxic metallic reagents. [Pg.64]

Even in an excess of ligands capable of stabilizing low oxidation state transition metal ions in aqueous systems, one may often observe the reduction of the central ion of a catalyst complex to the metallic state. In many cases this leads to a loss of catalytic activity, however, in certain systems an active and selective catalyst mixture is formed. Such is the case when a solution of RhCU in water methanol = 1 1 is refluxed in the presence of three equivalents of TPPTS. Evaporation to dryness gives a brown solid which is an active catalyst for the hydrogenation of a wide range of olefins in aqueous solution or in two-phase reaction systems. This solid contains a mixture of Rh(I)-phosphine complexes, TPPTS oxide and colloidal rhodium. Patin and co-workers developed a preparative scale method for biphasic hydrogenation of olefins [61], some of the substrates and products are shown on Scheme 3.3. The reaction is strongly influenced by steric effects. [Pg.63]

The second example demonstrated immobilization via ship in a bottle , ionic, metal center, and covalent bonding approaches of the metal-salen complexes. Zeolites X and Y were highly dealuminated by a succession of different dealumi-nation methods, generating mesopores completely surrounded by micropores. This method made it possible to form cavities suitable to accommodate bulky metal complexes. The catalytic activity of transition metal complexes entrapped in these new materials (e.g, Mn-S, V-S, Co-S, Co-Sl) was investigated in stereoselective epoxidation of (-)-a-pinene using 02/pivalic aldehyde as the oxidant. The results obtained with the entrapped organometallic complex were comparable with those of the homogeneous complex. [Pg.295]

Another arylation method, in the case of nitrogen heterocycles, does not need a halogenated derivative but a heterocycle activated by triflic anhydride260,261 (reaction 22). Simple aryl halides usually do not react with phosphines and special methods therefore have to be used for their arylation. The most widely used is the complex salt method , in which an aryl halide is heated with a phosphine in the presence of a transition metal such as nickel (II)2e (reaction 23). The catalytic cycle probably takes place by means of a reduced nickel(I) complex, generated in situ from the starting nickel(II) salt this nickel(I) species could undergo an oxidative addition of the aryl halide to yield a transient nickel(III) adduct, which after the reductive elimination of the aryphosphonium affords the recovery of the first active-nickel(I) complex (reaction 24). [Pg.72]

Correlations between structure and catalytic activity have been described for carbonium-ion type reactions (1). Much effort was also spent to establish a correlation between structural and compositional factors and the activity for redox type reactions (1, 9-12). Transition metal ions in zeolites were shown to be active in the oxidation and hydrogenation of hydrocarbons. In this connection various techniques were used to locate the cations in the framework of the faujasite-type zeolites (13-20). These ions migrate upon thermal treatment or by the adsorption of various substances. Thus, methods are needed to determine the location of the cations under reaction conditions. [Pg.449]


See other pages where Transition metal catalytic oxidation methods is mentioned: [Pg.180]    [Pg.475]    [Pg.267]    [Pg.220]    [Pg.171]    [Pg.1212]    [Pg.303]    [Pg.262]    [Pg.186]    [Pg.187]    [Pg.206]    [Pg.308]    [Pg.6]    [Pg.30]    [Pg.59]    [Pg.137]    [Pg.212]    [Pg.2]    [Pg.456]    [Pg.317]    [Pg.267]    [Pg.232]    [Pg.710]    [Pg.815]    [Pg.85]    [Pg.124]    [Pg.562]    [Pg.422]    [Pg.184]    [Pg.245]    [Pg.12]    [Pg.216]    [Pg.647]    [Pg.110]    [Pg.11]    [Pg.187]    [Pg.218]    [Pg.726]    [Pg.303]    [Pg.647]    [Pg.297]    [Pg.435]   
See also in sourсe #XX -- [ Pg.23 ]




SEARCH



Catalytic metals

Metal catalytic oxidation

Metal methods

Oxide method

Transition metal oxide

Transition metal oxide oxides

Transition metals oxidation

Transition oxides

© 2024 chempedia.info