Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Transition metal catalysts carbon-hydrogen activation

Not all C-H activation chemistry is mediated by transition metal catalysts. Many of the research groups involved in transition metal catalysis for C-H activation have opted for alternative means of catalysis. The activation of methane and ethane in water by the hexaoxo-/i-peroxodisulfate(2—) ion (S2O82) was studied and proceeds by hydrogen abstraction via an oxo radical. Methane gave rise to acetic acid in the absence of external carbon monoxide, suggesting a reaction of a methyl radical with CO formed in situ. Moreover, the addition of (external) CO to the reaction mixture led to an increase in yield of the acid product (Equation (ll)).20... [Pg.105]

Despite the fact that carbon dioxide (C02) is used in a great number of industrial applications, it remains a molecule of low reactivity, and methods have still to be identified for its activation. Both thermodynamic and kinetic problems are connected with the reactivity of C02, and few reactions are thermodynamically feasible. A very promising approach to activation is offered by its coordination to transition metal complexes, as both stoichiometric reactions of C-C bond formation and catalytic reactions of C02 are promoted by transition metal systems. Efforts to enhance the yield of hydrogen in water gas-shift (WGS) reactions have also been centered on C02 interactions with transition metal catalysts. The coordination on metal centers lowers the activation energy required in further reactions with suitable reactants involving C02, making it possible to convert this inert molecule into useful products. [Pg.55]

The quantitative aspect of the EXAFS technique is also well known and the literature gives several studies where chemisorption and EXAFS measurements are compared (see for example We can illustrate this particular contribution of the spectroscopy by a study of rare earth transition metal catalysts prepared from intermetallic LaNij-type compounds. The three classical preparation steps are here skipped with a carbon monoxide hydrogenation reaction. The intermetallic phase is transformed into a rare earth oxide upon which the transition metal is left as metallic clusters which form the active species. This transformation has been followed as a function of the time reaction In Fig. 5 we plot the Fourier transforms of CeNij at the nickel edge before the reaction (a), after 10 hours (b) and after 27 hours (c) under the CO + H2 mixture. These are all compared to elemental nickel (d). The increase of the amplitude of the first peak and the growth of three new ones at greater distances are the consequence of the formation of nickel particles. A careful analysis of these four shells has allowed us quantitatively to estimate the fraction of extracted nickel during the reaction as 30% after 10 hours and 80% after 27 hours on a CO + flux at 350 °C. [Pg.75]

While the hydrogenation of the active surface carbon that forms from CO dissociation appears to be the predominant mechanism of CH4 formation, it is not the only mechanism that produces methane. Poutsma et al. [85] have detected the formation of CH4 over paliadium surfaces that do not readily dissociate carbon monoxide. They also observed methane formation over nickel surfaces at 300 K under conditions in which only molecular carbon m.onoxide appears to be present on the catalyst surfaces [81]. Vannice [86] also reported the formation of methane over platinurh, palladium, and iridium surfaces, and independent experiments indicate the absence of carbon monoxide dissociation over these transition-metal catalysts in most cases. It appears that the direct hydrogenation of molecular carbon monoxide can also occur but that this reaction has a much lower rate than methane formation via the hydrogenation of the active carbon that is produced from the dissociation of carbon monoxide in the appropriate temperature range. [Pg.490]

In Scheme 1.2, all of the types of carbonylations that are discussed in the book are depicted. Alcohols, amines, ethers, carboxylic acids and halides can be converted to acids, amides, esters, ketones, alkynones, alkenones, anhydrides and acid halides with the assistance of transition metal catalysts in the presence of a CO source. The CO sources used can be carbon monoxide gas, Mo(CO)6, Co(CO>6, formic acid, aldehyde, etc. If the starting material is alcohols or amines, some additives for activation are needed, such as BuONO, TsCl, AcCl. If the substrate is (Hetero)ArH, additional oxidants will be necessary this is a so-caUed oxidative carbonylation. If an unsaturated compound is to be carbonylated, a nucleophile NuH that carries an acidic hydrogen has to be present. In the case of insertion reactions, this is not necessary. [Pg.4]

The most widely used method for adding the elements of hydrogen to carbon-carbon double bonds is catalytic hydrogenation. Except for very sterically hindered alkenes, this reaction usually proceeds rapidly and cleanly. The most common catalysts are various forms of transition metals, particularly platinum, palladium, rhodium, ruthenium, and nickel. Both the metals as finely dispersed solids or adsorbed on inert supports such as carbon or alumina (heterogeneous catalysts) and certain soluble complexes of these metals (homogeneous catalysts) exhibit catalytic activity. Depending upon conditions and catalyst, other functional groups are also subject to reduction under these conditions. [Pg.368]


See other pages where Transition metal catalysts carbon-hydrogen activation is mentioned: [Pg.1]    [Pg.31]    [Pg.374]    [Pg.2]    [Pg.261]    [Pg.303]    [Pg.73]    [Pg.76]    [Pg.815]    [Pg.226]    [Pg.151]    [Pg.2]    [Pg.14]    [Pg.447]    [Pg.8]    [Pg.258]    [Pg.8]    [Pg.160]    [Pg.305]    [Pg.79]    [Pg.261]    [Pg.45]    [Pg.5]    [Pg.370]    [Pg.265]    [Pg.377]    [Pg.402]    [Pg.277]    [Pg.3]    [Pg.264]    [Pg.131]    [Pg.73]    [Pg.389]    [Pg.127]    [Pg.212]    [Pg.1037]    [Pg.487]    [Pg.725]    [Pg.66]    [Pg.212]    [Pg.374]    [Pg.4]    [Pg.26]    [Pg.116]   


SEARCH



Active carbon catalysts

Active hydrogen

Activity, hydrogenation

Carbon-metal catalysts

Catalysts carbon

Hydrogen activated

Hydrogen activation

Hydrogen activity

Hydrogen transition

Hydrogenation transition metals

Hydrogenation, activated

Hydrogenation, catalyst activity

Metal active transition

Metal carbonates hydrogen

Metal-activated carbon catalysts

Transition active

Transition catalyst

Transition! metal activation

© 2024 chempedia.info