Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Transition elementary quantum-chemical model

On a modest level of detail, kinetic studies aim at determining overall phenomenological rate laws. These may serve to discriminate between different mechanistic models. However, to it prove a compound reaction mechanism, it is necessary to determine the rate constant of each elementary step individually. Many kinetic experiments are devoted to the investigations of the temperature dependence of reaction rates. In addition to the obvious practical aspects, the temperature dependence of rate constants is also of great theoretical importance. Many statistical theories of chemical reactions are based on thermal equilibrium assumptions. Non-equilibrium effects are not only important for theories going beyond the classical transition-state picture. Eventually they might even be exploited to control chemical reactions [24]. This has led to the increased importance of energy or even quantum-state-resolved kinetic studies, which can be directly compared with detailed quantum-mechanical models of chemical reaction dynamics [25,26]. [Pg.2115]

Microkinetic modeling assembles molecular-level information obtained from quantum chemical calculations, atomistic simulations and experiments to quantify the kinetic behavior at given reaction conditions on a particular catalyst surface. In a postulated reaction mechanism the rate parameters are specified for each elementary reaction. For instance adsorption preexponential terms, which are in units of cm3 mol"1 s"1, have been typically assigned the values of the standard collision number (1013 cm3 mol"1 s 1). The pre-exponential term (cm 2 mol s 1) of the bimolecular surface reaction in case of immobile or moble transition state is 1021. The same number holds for the bimolecular surface reaction between one mobile and one immobile adsorbate producing an immobile transition state. However, often parameters must still be fitted to experimental data, and this limits the predictive capability that microkinetic modeling inherently offers. A detailed account of microkinetic modelling is provided by P. Stoltze, Progress in Surface Science, 65 (2000) 65-150. [Pg.108]

As the fundamental concepts of chemical kinetics developed, there was a strong interest in studying chemical reactions in the gas phase. At low pressures the reacting molecules in a gaseous solution are far from one another, and the theoretical description of equilibrium thermodynamic properties was well developed. Thus, the kinetic theory of gases and collision processes was applied first to construct a model for chemical reaction kinetics. This was followed by transition state theory and a more detailed understanding of elementary reactions on the basis of quantum mechanics. Eventually, these concepts were applied to reactions in liquid solutions with consideration of the role of the non-reacting medium, that is, the solvent. [Pg.305]

It should be stressed that the wave-packet picture of photophysical relaxation and photochemical reaction dynamics described in this chapter is substantially different from the traditional concepts in this area. In contrast to the established picture of radiationless transitions in terms of interacting tiers of zero-order molecular eigenstates, the dynamics is rationalized in terms of local properties of PE surfaces such as slopes, barriers and surface intersections, a view which now becomes widely accepted in photochemistry. This picture is firmly based on ah initio electronic-structure theory, and the molecular relaxation d3mamics is described on the basis of quantum mechanics, replacing previously prevaUing kinetic models of electronic decay processes. Such a more detailed and rigorous description of elementary photochemical processes appears timely in view of the rich and specific information on ultrafast chemical processes which is provided by modern time-resolved spectroscopy. " ... [Pg.424]


See other pages where Transition elementary quantum-chemical model is mentioned: [Pg.27]    [Pg.2115]    [Pg.253]    [Pg.101]    [Pg.239]    [Pg.395]    [Pg.455]    [Pg.457]    [Pg.397]    [Pg.33]    [Pg.607]    [Pg.336]    [Pg.121]    [Pg.56]    [Pg.218]    [Pg.185]    [Pg.487]    [Pg.12]    [Pg.263]   


SEARCH



Chemical transition

Model transit

Models, elementary

Quantum chemical

Quantum chemical model

Quantum model

Quantum modeling

Quantum transition

Quantum-chemical modeling

Transition model

© 2024 chempedia.info