Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

TIME-DEPENDENT STATES AND SPECTROSCOPY

Besides fluorescence spectroscopy, time-resolved spectroscopy can rely on the measurement of excited (singlet or triplet) state absorption. Similarly to ground-state absorption, the spectral and absorbance properties may be altered by CyD complexation and yield information about the behavior of the complex in the excited state in addition, the time dependence (formation and decay) of the excited state absorption yields information about the kinetics and dynamics of the system. This is illustrated by the behavior of the lowest triplet state of naphthalene as measured by nanosecond spectroscopy using a Q-switched Nd YAG laser at 266 nm for excitation [21]. The triplet-triplet absorption spectra were measured in neat solvents (water and ethanol) and in the presence of a- and -CyD (Fig. 10.3.3). The spectra in ethanol and H2O had the same absorption maximum, but the transition was considerably weaker and broadened in H2O. Both CyDs induced a red shift, and a-CyD additionally narrowed the main band considerably. Fig. 10.3.4 shows the effect of a-CD concentration on the time evolution of the triplet-triplet absorption at 416 nm in the microsecond range. Triplet decay was caused by O2 quenching a detailed kinetic analysis of the time dependence yielded two main components which could be assigned to the free guest and the 1 2 complex, in full... [Pg.282]

The time-dependent theory of spectroscopy bridges this gap. This approach has received less attention than the traditional time-independent view of spectroscopy, but since 1980, it has been very successfully applied to the field of coordination chemistry.The intrinsic time dependence of external perturbations, for example oscillating laser fields used in electronic spectroscopy, is also expKdtly treated by modern computational methods such as time-dependent density functional theory, a promising approach to the efficient calculation of electronic spectra and exdted-state structures not based on adjustable parameters, as described in Chapter 2.40. In contrast, the time-dependent theory of spectroscopy outlined in the following often relies on parameters obtained by adjusting a calculated spectrum to the experimental data. It provides a unified approach for several spectroscopic techniques and leads to intuitive physical pictures often qualitatively related to classical dynamics. The concepts at its core, time-dependent wave functions (wave packets) and autocorrelation functions, can be measured with femtosecond (fs) techniques, which often illustrate concepts very similar to those presented in the following for the analysis of steady-state spectra. The time-dependent approach therefore unifies spectroscopic... [Pg.559]

L. The time-dependent view of spectroscopy (Heller, 1981). Suppose that at time t = 0 we make a Franck ondon transition to an upper electronic state. This takes the initial vibrational wave function up in energy and onto a different potential for the motion of the nuclei. This initial state is no longer stationary and it starts evolving in time. The first thing that will happen is tiiat the wave function will depart from the Franck-Condon region. What we want to know is how quickly it will do so. If the molecule is a diatomic, the initial state will periodically revive. But for a polyatomic, IVR will, over time, reduce tiie revival. Hence for a polyatomic we also want to know where the wave-packet goes to. This... [Pg.326]

The vibrationally excited states of H2-OH have enough energy to decay either to H2 and OH or to cross the barrier to reaction. Time-dependent experiments have been carried out to monitor the non-reactive decay (to H2 + OH), which occurs on a timescale of microseconds for H2-OH but nanoseconds for D2-OH [52, 58]. Analogous experiments have also been carried out for complexes in which the H2 vibration is excited [59]. The reactive decay products have not yet been detected, but it is probably only a matter of time. Even if it proves impossible for H2-OH, there are plenty of other pre-reactive complexes that can be produced. There is little doubt that the spectroscopy of such species will be a rich source of infonnation on reactive potential energy surfaces in the fairly near future. [Pg.2451]

A qualitatively different approach to probing multiple pathways is to interrogate the reaction intermediates directly, while they are following different pathways on the PES, using femtosecond time-resolved pump-probe spectroscopy [19]. In this case, the pump laser initiates the reaction, while the probe laser measures absorption, excites fluorescence, induces ionization, or creates some other observable that selectively probes each reaction pathway. For example, the ion states produced upon photoionization of a neutral species depend on the Franck-Condon overlap between the nuclear configuration of the neutral and the various ion states available. Photoelectron spectroscopy is a sensitive probe of the structural differences between neutrals and cations. If the structure and energetics of the ion states are well determined and sufficiently diverse in... [Pg.223]

Hudock et al. [126] used the ab initio molecular dynamics multiple spawning method to go beyond the static picture based on PES and include the time dependent dynamical behavior and predict time-resolved photoelectron spectroscopy results. According to these results the first ultrafast component of the photoelectron spectra of uracil corresponds to relaxation on the S2 minimum rather than nonadiabatic transitions to the Si state. The authors suggest that the radiationless relaxation from... [Pg.304]

A variety of alkyl halides have been reduced at room temperature, including benzyl halides, primary, secondary and tertiary alkyl halides. The reaction times depend on the halide, and vary between 20min (benzyl bromide, 0.5 mol% 28) up to several days (iodopentane, fluoropentane). The reactivity of alkyl halides decreases in the order R—Br > R—Cl > R—1 when reductions are performed in separate flasks. Several mechanistic details of the reaction have been uncovered by in situ monitoring of the reaction by NMR spectroscopy. The precatalyst 28 appeared to be activated by a rapid reduction of the coordinated acetone to PrO—SiEt3 and concomitant coordination of an alkyl halide (H Scheme 12.11). This complex represents a resting state that is in equilibrium with a o-silane... [Pg.317]


See other pages where TIME-DEPENDENT STATES AND SPECTROSCOPY is mentioned: [Pg.60]    [Pg.61]    [Pg.62]    [Pg.63]    [Pg.64]    [Pg.65]    [Pg.66]    [Pg.67]    [Pg.68]    [Pg.69]    [Pg.70]    [Pg.71]    [Pg.72]    [Pg.73]    [Pg.74]    [Pg.75]    [Pg.60]    [Pg.61]    [Pg.62]    [Pg.63]    [Pg.64]    [Pg.65]    [Pg.66]    [Pg.67]    [Pg.68]    [Pg.69]    [Pg.70]    [Pg.71]    [Pg.72]    [Pg.73]    [Pg.74]    [Pg.75]    [Pg.8]    [Pg.187]    [Pg.3]    [Pg.128]    [Pg.160]    [Pg.253]    [Pg.1564]    [Pg.1591]    [Pg.107]    [Pg.380]    [Pg.97]    [Pg.90]    [Pg.404]    [Pg.50]    [Pg.354]    [Pg.211]    [Pg.54]    [Pg.31]    [Pg.111]    [Pg.141]    [Pg.305]    [Pg.85]    [Pg.104]    [Pg.106]    [Pg.439]    [Pg.284]    [Pg.53]   


SEARCH



State dependency

State-dependent

Time spectroscopy

Time-dependent states

© 2024 chempedia.info