Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Thyroxine activity

A second type of EMIT has been developed using the enzyme malate dehydrogenase as the enzymatic label. Research has shown that thyroxine competitively inhibits malate dehydrogenase. A conjugate prepared with thyroxine covalently bound close to the enzyme s active site shows very low specific activity that can be restored by binding of the thyroxine to arcP -thyroxine antibody. In this very specific assay for thyroxine, enzyme activity increases upon antibody binding, so that in a competitive assay for free thyroxine, activity decreases with increasing free thyroxine concentration. [Pg.119]

In 1964 Hansch and Fujita (20) studied the structure-activity relationships of the thyroxine-like activity of nine halogen-substituted thyroxine analogs. From their results they suggested that the terf-butyl analog should also show thyroxine activity. This compound was synthesized (21) and found to be as potent as the most active halogen compound. [Pg.111]

The term chiral recognition refers to a process m which some chiral receptor or reagent interacts selectively with one of the enantiomers of a chiral molecule Very high levels of chiral recognition are common m biological processes (—) Nicotine for exam pie IS much more toxic than (+) nicotine and (+) adrenaline is more active than (—) adrenaline m constricting blood vessels (—) Thyroxine an ammo acid of the thyroid gland that speeds up metabolism is one of the most widely used of all prescription... [Pg.295]

Amino acid-derived hormones include the catecholamines, epinephrine and norepinephrine (qv), and the thyroid hormones, thyroxine and triiodothyronine (see Thyroid AND ANTITHYROID PREPARATIONS). Catecholamines are synthesized from the amino acid tyrosine by a series of enzymatic reactions that include hydroxylations, decarboxylations, and methylations. Thyroid hormones also are derived from tyrosine iodination of the tyrosine residues on a large protein backbone results in the production of active hormone. [Pg.171]

Thyroid Hormones. Iodine, absorbed as P, is oxidized in the thyroid and bound to a thyroglobulin. The resultant glycoprotein, mol wt 670,000, contains 120 tyrosine residues of which ca two-thirds are available for binding iodine in several ways. Proteolysis introduces the active hormones 3,5,3 -triiodothyronine (T ) and 3,5,3, 5 -tetraiodothyronine (T, (thyroxine) in the ratio Ty.T of 4 1 (121,122). [Pg.386]

Only small amounts of free T are present in plasma. Most T is bound to the specific carrier, ie, thyroxine-binding protein. T, which is very loosely bound to protein, passes rapidly from blood to cells, and accounts for 30—40% of total thyroid hormone activity (121). Most of the T may be produced by conversion of T at the site of action of the hormone by the selenoenzyme deiodinase (114). That is, T may be a prehormone requiring conversion to T to exert its metaboHc effect (123). [Pg.386]

Thyroxine (3, 5, 3,5-L-teraiodothyronine, T4) is a thyroid hormone, which is transformed in peripheral tissues by the enzyme 5 -monodeiodinase to triiodothyronine. T4 is 3-8 times less active than triiodothyronine. T4 circulates in plasma bound to plasma proteins (T4-binding globulin, T4-binding prealbumin and albumin). It is effective in its free non-protein-bound form, which accounts for less than 1%. Its half-life is about 190 h. [Pg.1201]

Triiodothyronine (3, 5,3-L-triiodothyronine, T3) is a thyroid hormone. It is producedby outer ring deiodination of thyroxine (T4) in peripheral tissues. The biologic activity of T3 is 3-8 times higher than that of T4. T3 is 99.7% protein-bound and is effective in its free non-protein-bound form. The half-life of triiodothyronine is about 19 h. The daily tur nover of T3 is 75%. Triiodothyronine acts via nuclear receptor binding with subsequent induction of protein synthesis. Effects of thyroid hormones are apparent in almost all organ systems. They include effects on the basal metabolic rate and the metabolisms of proteins, lipids and carbohydrates. [Pg.1243]

Bruice TC, Kharasch N, Winzler RJ. A correlation of thyroxine-like activity and chemical structure. Arch Biochem Biophys 1956 62 305-17. [Pg.42]

The formation of triiodothyronine (T3) and tetra-iodothyronine (thyroxine T4) (see Figure 42—2) illustrates many of the principles of diversity discussed in this chapter. These hormones require a rare element (iodine) for bioactivity they are synthesized as part of a very large precursor molecule (thyroglobuhn) they are stored in an intracellular reservoir (colloid) and there is peripheral conversion of T4 to T3, which is a much more active hormone. [Pg.447]

FIGURE 41-1. Hypothalamic-pituitary-thyroid axis. Thyrotropinreleasing hormone (TRH) is synthesized in the neurons within the paraventricular nucleus of the hypothalamus. TRH is released into the hypothalamic-pituitary portal circulation and carried to the pituitary, where it activates the pituitary to synthesize and release thyrotropin (TSH). TSH activates the thyroid to stimulate the synthesis and secretion of thyroxine (T4) and triiodothyronine (T3). T4 and T3 inhibit TRH and TSH secretion, closing the feedback loop. [Pg.669]

J5. Jaume, J. C., Mendel, C. M Frost, P. H., Greenspan, F. S and Laughton, C. W., Extremely low doses of heparin release lipase activity into plasma and can thereby cause artifactual elevations in serum free thyroxine concentration as measured by equilibrium dialysis. Thyroid 6, 79-84 (1996). [Pg.119]

This method was used, for example, for the solid-phase immunoassay of thyroxine (affinity chromatography). Various activation methods (CDI, periodate, and cyanogen bromide procedures) were compared with each other for coupling antibodies to magnetizable cellulose/iron oxide solid-phase particles. 211]... [Pg.144]

MISCELLANEOUS ARYLALKANOIC ACIDS It has been known for some time that thyroxine, and related compounds such as liothyronine (88) are effective in lowering serum cholesterol. The normal metabolic activity of this class of thyroid active compounds has precluded their use as hypocholesterol-emic agents. [Pg.78]

Derived from the amino acid tyrosine, thyroid hormones are unique because they contain iodine. At this time, its incorporation into thyroid hormones is the only known use for iodine in the body. There are two thyroid hormones, named for the number of iodides added to the tyrosine residues of the thyroglobulin triiodothyronine (T3) and tetraiodothyronine (T4, thyroxine). Although significantly more T4 is synthesized by the thyroid gland, T3 is the active hormone. At the target tissue, T4 is deiodoninated to form the more potent T3. [Pg.129]


See other pages where Thyroxine activity is mentioned: [Pg.3199]    [Pg.112]    [Pg.3198]    [Pg.265]    [Pg.3199]    [Pg.112]    [Pg.3198]    [Pg.265]    [Pg.395]    [Pg.398]    [Pg.398]    [Pg.405]    [Pg.477]    [Pg.46]    [Pg.46]    [Pg.48]    [Pg.50]    [Pg.32]    [Pg.42]    [Pg.70]    [Pg.71]    [Pg.2]    [Pg.97]    [Pg.189]    [Pg.190]    [Pg.811]    [Pg.1201]    [Pg.530]    [Pg.169]    [Pg.144]    [Pg.240]    [Pg.95]    [Pg.208]    [Pg.668]    [Pg.43]    [Pg.108]    [Pg.100]    [Pg.79]   
See also in sourсe #XX -- [ Pg.116 ]




SEARCH



Thyroxin

Thyroxine

© 2024 chempedia.info