Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Threshold values thiophenes

A number of furans with thiol, sulphide or disulphide substitution have been reported as aroma volatiles, and these are particularly important in meat and coffee. In the early 1970s, it was shown that furans and thiophenes with a thiol group in the 3-position possess strong meat-like aromas and exceptionally low odour threshold values [50] however, it was over 15 years before such compounds were reported in meat itself In 1986,2-methyl-3-(methylthio)furan was identified in cooked beef and it was reported to have a low odour threshold value (0.05 pg/kg) and a meaty aroma at levels below 1 pg/kg [51]. Gasser and Grosch [52] identified 2-methyl-3-furanthiol and the corresponding disulphide, bis(2-methyl-3-furanyl) disulphide, as major contributors to the meaty aroma of cooked beef. The odour threshold value of this disulphide has been reported as 0.02 ng/kg, one of the lowest known threshold values [53]. Other thiols which may contribute to meaty aromas include mercaptoketones, such as 2-mercapto-pentan-3-one. 2-Furylmethanethiol (2-furfurylmercaptan) has also been found in meat, but is more likely to contribute to roasted rather than meaty aromas. Disulphides have also been found, either as symmetrical disulphides derived from two molecules of the same thiol or as mixed disulphides from two different thiols [54]. [Pg.280]

Yeast extracts represent an important source of volatile sulfur compounds, many of which possess low odor threshold values. They are used as sources of flavor for a range of savory foods, especially when a meaty note is required. In spite of the usefulness of yeast extracts, there are very few reports of their volatile flavor components. The production of yeast extracts is briefly reviewed, and the volatile sulfur compounds which have been identified are discussed. A recent study is presented in which the aroma components of some yeast extracts were analyzed. A total of 268 compounds were identified, including 67 sulfur compounds. The 34 sulfur compounds reported for the first time comprised 3 aliphatic sulfur compounds, one sulfur-substituted benzene derivative, 10 thiophenes, 18 thiazoles and 2 alicyclic sulfur compounds. Their importance as components of flavors and routes to their formation are considered. [Pg.147]

Some of the compounds identified in YEs which are formed either by the thermal degradation of thiamine or on the interaction of thiamine degradation products with other components are shown in Fig. 2. They include aliphatic sulfur compounds, furans, thiophenes and thiazoles. 2-Methyl-3-furanthiol and 2-methyl-3-thiophenethiol have been identified in YEs 9,13 14) and are well known thermal degradation products of thiamine (29). As well as possessing meaty aromas and low odor threshold values 34), these compounds are key precursors of several other sulfur-substituted furans and thiophenes, including the derivatives in Fig. 2. Most possess meaty aromas at low concentrations and several have been identified in YEs (see Tables I and III). [Pg.154]

The investigation of characteristic flavors associated with cooked meats has been the subject of much research over the past four decades but, although compounds with "meaty" aromas had been synthesized, compounds with such characteristics were not found in cooked meats until recently (1). In the search for compounds with characteristic aromas it was found that furans and thiophenes with a thiol group in the 3-position possessed meat-like aromas (2). The corresponding disulfides formed by oxidation of furan and thiophene thiols were also found to have meat-like characteristics, and exceptionally low odor threshold values (3). A number of such compounds are formed in heated model systems containing hydrogen sulfide or cysteine and pentoses or other sources of carbonyl compounds (4,5), The thermal degradation of thiamine also produces 2-methyl-3-fiiranthiol and a number of sulfides and disulfides (6J). [Pg.180]

Poly thiophene, PTP, and polypyrrole, PPR, blends with PS and PC were prepared by Wang et al. [1990] by thiophene or pyrrole electrochemical polymerization using electrodes coated with PS or PC hlms. The thiophene or pyrrole diffuses into the fihn and polymerizes in-situ in the film. Threshold conductivity occurs at 18 wt% for both conducting polymers in PS. Lower levels exist for PTP (12 wt%) and PPR (7 wt%) in PC. Miscibility of PPR/PC is attributed to the lower threshold limit as phase separated blends would be expected to have higher values. Previous studies with polyacetylene/PS blends reported threshold conductivity at 16 wt% polyacetylene [Aldissi and Bishop, 1985]. [Pg.1183]


See other pages where Threshold values thiophenes is mentioned: [Pg.275]    [Pg.180]    [Pg.276]    [Pg.366]    [Pg.143]    [Pg.78]    [Pg.423]    [Pg.50]    [Pg.228]    [Pg.625]    [Pg.228]    [Pg.365]    [Pg.66]   


SEARCH



THRESHOLD VALUE

© 2024 chempedia.info