Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Thiols cysteine synthase reaction

This enzyme [EC 4.2.99.8], also known as cysteine synthase and O-acetylserine sulfhydrylase, catalyzes the pyr-idoxal-phosphate-dependent reaction of H2S with O -acetylserine to produce cysteine and acetate. Some alkyl thiols, cyanide, pyrazole, and some other heterocyclic compounds can also act as acceptors. [Pg.11]

Figure 21-2. Fatty acid synthase multienzyme complex. The complex is a dimer of two identical polypeptide monomers, 1 and 2, each consisting of seven enzyme activities and the acyl carrier protein (ACP). (Cys— SH, cysteine thiol.) The— SH of the 4 -phosphopantetheine of one monomer is in close proximity to the— SH of the cysteine residue of the ketoacyl synthase of the other monomer, suggesting a "head-to-tail" arrangement of the two monomers. Though each monomer contains all the partial activities of the reaction sequence, the actual functional unit consists of one-half of one monomer interacting with the complementary half of the other. Thus, two acyl chains are produced simultaneously. The sequence of the enzymes in each monomer is based on Wakil. Figure 21-2. Fatty acid synthase multienzyme complex. The complex is a dimer of two identical polypeptide monomers, 1 and 2, each consisting of seven enzyme activities and the acyl carrier protein (ACP). (Cys— SH, cysteine thiol.) The— SH of the 4 -phosphopantetheine of one monomer is in close proximity to the— SH of the cysteine residue of the ketoacyl synthase of the other monomer, suggesting a "head-to-tail" arrangement of the two monomers. Though each monomer contains all the partial activities of the reaction sequence, the actual functional unit consists of one-half of one monomer interacting with the complementary half of the other. Thus, two acyl chains are produced simultaneously. The sequence of the enzymes in each monomer is based on Wakil.
This pyridoxal-phosphate-dependent enzyme [EC 4.2.99.9], also known as cystathionine y-synthase, catalyzes the reaction of O-succinyl-L-homoserine with L-cysteine to produce cystathionine and succinate. The enzyme can also use hydrogen sulfide and methanethiol as substrates, producing homocysteine and methionine, respectively. In the absence of a thiol, the enzyme can also catalyze a /3,y-elimination reaction to form 2-oxobu-tanoate, succinate, and ammonia. [Pg.665]

Following loading of acetyl and malonyl groups onto the P subunit of the enzyme, additional intramolecular transfers must occur to prepare the substrates for the decarboxylative condensation reaction which is catalyzed by the -ketoacyl synthase domain of the a subunit. The end result of these transfers is the thio-esterification of malonate by the phosphopantetheine thiol and of acetate by Cys-1305(a) of the -keto synthase active site. This cysteine has been shown to have a dramatically lowered pK (<5), which would encourage its reactivity [65]. [Pg.95]

Several PLP-dependent enzymes catalyze elimination and replacement reactions at the y-carbon of substrates, an unusual process which provides novel routes for mechanism-based inactivation. An example of this class of enzymes is cystathionine y-synthase [0-succinylhomoserine (thiol)-lyase], which converts (7-succinyl-L-homoserine and L-cysteine to cystathionine and succinate as part of the bacterial methionine biosynthetic pathway (Walsh, 1979, p. 823). Formation of a PLP-stabilized o-carbanion intermediate activates the )8-hydrogen for abstraction, yielding j8-carbanion equivalents and allowing elimination of the y-substituent. The resulting j8,y-unsaturated intermediate serves as an electrophilic acceptor for the replacement nucleophile. Suitable manipulation of the j8-carbanion intermediate allows strategies for the design of inactivators which do not affect enzymes which abstract only the a-hydrogen. [Pg.227]

Such a condensation is mediated by the enzyme 3-hydroxy-3-methylglutaryl-CoA synthase (HMGS). The mechanism of this catalysis is outlined in Figure 1.21. An initial frani-thioesterase step transfers the acetyl group of the first acetyl-CoA to an enzymatic cysteine. In the Claisen condensation phase of the reaction, the a-carbon of a second acetyl-CoA is deprotonated, forming an enolate. The enolate carbon attacks the electrophilic thioester carbon, forming a tetrahedral intermediate which quickly collapses to expel the cysteine thiol [22]. [Pg.19]


See other pages where Thiols cysteine synthase reaction is mentioned: [Pg.461]    [Pg.497]    [Pg.97]    [Pg.153]    [Pg.36]    [Pg.62]    [Pg.458]    [Pg.311]    [Pg.391]    [Pg.396]    [Pg.635]    [Pg.78]    [Pg.52]    [Pg.70]    [Pg.97]   
See also in sourсe #XX -- [ Pg.461 , Pg.497 , Pg.499 ]




SEARCH



Cysteine synthase thiols

Cysteine thiol

Thiol Reactions

© 2024 chempedia.info