Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Thermodynamic properties partial pressures

All other thermodynamic properties for an ideal solution foUow from this equation. In particular, differentiation with respect to temperature and pressure, followed by appHcation of equations for partial properties analogous to equations 62 and 63, leads to equations 191 and 192 ... [Pg.497]

Comparing Examples 2a and 2b we notice that the total air pressure has effects on the humidity x, partial density of dry air p total pressure or pressure of humid air, and enthalpy h. Knowing the total pressure is therefore essential in calculations of the thermodynamic properties of humid air. [Pg.73]

Thermodynamics gives limited information on each of the three coefficients which appear on the right-hand side of Eq. (1). The first term can be related to the partial molar enthalpy and the second to the partial molar volume the third term cannot be expressed in terms of any fundamental thermodynamic property, but it can be conveniently related to the excess Gibbs energy which, in turn, can be described by a solution model. For a complete description of phase behavior we must say something about each of these three coefficients for each component, in every phase. In high-pressure work, it is important to give particular attention to the second coefficient, which tells us how phase behavior is affected by pressure. [Pg.141]

However, since the standard state of carbon is the condensed state, carbon graphite, the only partial pressure it exerts is its vapor pressure (pw), a known thermodynamic property that is also a function of temperature. Thus, the preceding formation expression is written as... [Pg.16]

Because most chemical, biological, and geological processes occur at constant temperature and pressure, it is convenient to provide a special name for the partial derivatives of all thermodynamic properties with respect to mole number at constant pressure and temperature. They are called partial molar properties, and they are defined by the relationship... [Pg.213]

In this chapter, we shall consider the methods by which values of partial molar quantities and excess molar quantities can be obtained from experimental data. Most of the methods are applicable to any thermodynamic property J, but special emphasis will be placed on the partial molar volume and the partial molar enthalpy, which are needed to determine the pressure and temperature coefficients of the chemical potential, and on the excess molar volume and the excess molar enthalpy, which are needed to determine the pressure and temperature coefficients of the excess Gibbs function. Furthermore, the volume is tangible and easy to visualize hence, it serves well in an initial exposition of partial molar quantities and excess molar quantities. [Pg.407]

Shock E. L. and Koretsky C. M. (1995). Metal-organic complexes in geochemical processes Estimation of standard partial molal thermodynamic properties of aqueous complexes between metal cations and monovalent organic acid ligands at high pressures and temperatures. Geochim. Cosmochim. Acta, 59 1497-1532. [Pg.854]

Fugacity is a thermodynamic property related to the deviation of the p—V—T properties of the gas from those of an ideal gas. At very low pressures, the fugacity of a real gas tends to its partial pressure... [Pg.12]

In recent times, the bond indicators , which are the ground state properties of the solid related to its cohesion (metaUic radii, cohesive energy, bulk moduli), have been interpreted in the light of band calculations. The bond in metals and in compounds has been described by an easily understandable and convincing thermodynamic formalism, which we shall illustrate in this chapter. Essentially, narrow bands, as the 5 f electrons form, are considered to be resonant with the wider (spd) conduction band. The 5 f electronic population is seen as a fluid the partial (bonding) pressure of which assists in cohesion along with the partial pressure of another fluid constituted by the conduction electrons of (s and d) character. ... [Pg.78]

Figure 17.5 Derived thermodynamic properties at T — 298.15 K and p = 0.1 MPa for (2Cic-CfiHi2 + X2n-CjHi4) (a) excess molar heat capacities obtained from the excess molar enthalpies (b) relative partial molar heat capacities obtained from the excess molar heat capacities (c) change of the excess molar volume with temperature obtained from the excess molar volumes and (d) change of the excess molar enthalpies with pressure obtained from the excess molar volumes. Figure 17.5 Derived thermodynamic properties at T — 298.15 K and p = 0.1 MPa for (2Cic-CfiHi2 + X2n-CjHi4) (a) excess molar heat capacities obtained from the excess molar enthalpies (b) relative partial molar heat capacities obtained from the excess molar heat capacities (c) change of the excess molar volume with temperature obtained from the excess molar volumes and (d) change of the excess molar enthalpies with pressure obtained from the excess molar volumes.
The discussion of each salt includes both qualitative and quantitative information, what is known of its behavior above ambient temperature, and quantitative data phase transitions, densities, and thermodynamic properties. When possible, high temperature properties, enthalpies and entropies at 298.15 K and above, are listed. When these are available, they are used to calculate equilibrium constants and partial pressures of the component gases. (For a discussion of this topic... [Pg.17]

Syngas composition, most importantly the H2/CO ratio, varies as a function of production technology and feedstock. Steam methane reforming yields H2/CO ratios of three to one whereas coal and biomass gasification yields ratios closer to unity or lower. Conversely, the required properties of the syngas are a function of the synthesis process. Fewer moles of product almost always occur when H2 and CO are converted to fuels and chemicals. Consequently, syngas conversion processes are more thermodynamically favorable at higher H2 and CO partial pressures. The optimum pressures depend on the specific synthesis process. [Pg.1519]

The operating pressure is obtained from the vapor pressure and the partial pressure of the gaseous educts and products. In this process, the temperatures applied are between 150 and 500 °C. In recent times, supercritical fluids have attracted a great deal of attention as potential extraction agents and reaction media in chemical reactions. This has resulted from an unusual combination of thermodynamic properties and transport properties. As a rule supercritical reactions like hydrolysis or oxidation are carried out in water. Above the critical point of water, its properties are very different to those of normal liquid water or atmospheric steam. [Pg.164]

From comparison of the thermodynamic properties of H2O and CO2 it can be concluded that an increase in pressure leads not only to a proportional increase in partial pressures and 002) in a water-carbon... [Pg.194]

The factor introduces into equation (9) an explicit dependence of m on the concentration of species 1 in the gas adjacent to the interface [see equation (B-78)]. Except for this difference, equation (9) contains the same kinds of parameters as does equation (6), since the coefficient a can be analyzed from the viewpoint of transition-state theory. Although a may depend in general on and the pressure and composition of the gas at the interface, a reasonable hypothesis, which enables us to express a in terms of kinetic parameters already introduced and thermodynamic properties of species 1, is that a is independent of the pressure and composition of the gas [a = a(7])]. Under this condition, at constant 7] the last term in equation (9) is proportional to the concentration j and the first term on the right-hand side of equation (9) is independent of. Therefore, by increasing the concentration (or partial pressure) of species 1 in the gas, the surface equilibrium condition for species 1—m = 0—can be reached. If Pi e(T denotes the equilibrium partial pressure of species 1 at temperature 7], then when m = 0, equation (9) reduces to... [Pg.236]


See other pages where Thermodynamic properties partial pressures is mentioned: [Pg.59]    [Pg.325]    [Pg.598]    [Pg.360]    [Pg.412]    [Pg.110]    [Pg.322]    [Pg.325]    [Pg.87]    [Pg.1030]    [Pg.133]    [Pg.218]    [Pg.9]    [Pg.174]    [Pg.129]    [Pg.136]    [Pg.17]    [Pg.830]    [Pg.179]    [Pg.192]    [Pg.447]    [Pg.323]    [Pg.161]    [Pg.82]    [Pg.67]    [Pg.372]    [Pg.94]    [Pg.281]    [Pg.417]    [Pg.162]    [Pg.57]   
See also in sourсe #XX -- [ Pg.7 , Pg.22 , Pg.23 , Pg.25 , Pg.26 , Pg.37 , Pg.40 , Pg.43 , Pg.44 , Pg.54 , Pg.55 , Pg.66 , Pg.67 , Pg.115 , Pg.116 , Pg.137 , Pg.180 ]




SEARCH



Partial pressure

Partial property

Thermodynamic pressure

Thermodynamics, pressure

© 2024 chempedia.info