Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Thermodynamic graphite

In the attempt at diamond synthesis (4), much unsuccesshil effort was devoted to processes that deposited carbon at low, graphite-stable pressures. Many chemical reactions Hberating free carbon were studied at pressures then available. New high pressure apparatus was painstakingly buHt, tested, analy2ed, rebuilt, and sometimes discarded. It was generally beheved that diamond would be more likely to form at thermodynamically stable pressures. [Pg.561]

Compiled from Daubert, T. E., R. R Danner, H. M. Sibiil, and C. C. Stebbins, DIPPR Data Compilation of Pure Compound Properties, Project 801 Sponsor Release, July, 1993, Design Institute for Physical Property Data, AlChE, New York, NY and from Thermodynamics Research Center, Selected Values of Properties of Hydrocarbons and Related Compounds, Thermodynamics Research Center Hydrocarbon Project, Texas A M University, College Station, Texas (extant 1994). The compounds are considered to be formed from the elements in their standard states at 298.15 K and 101,325 P. These include C (graphite) and S (rhombic). Enthalpy of combustion is the net value for the compound in its standard state at 298.15K and 101,325 Pa. [Pg.243]

Because the cohesive energy of the fullerene Cyo is —7.29 eV/atom and that of the graphite sheet is —7.44 eV/atom, the toroidal forms (except torus C192) are energetically stable (see Fig. 5). Finite temperature molecular-dynamics simulations show that all tori (except torus Cm2) are thermodynamically stable. [Pg.79]

The excess charge consumed in the first cycle is generally ascribed to SEI formation and corrosion-like reactions of Li C6[19, 66, 118-120]. Like metallic lithium and Li-rich Li alloys, lithiated graphites, and more generally lithiated carbons are thermodynamically unstable in all known electrolytes, and therefore the surfaces which are exposed to the electrolyte have to be kinetically protected by SEI films (see Chapter III, Sec.6). Neverthe-... [Pg.392]

Reactions 1 and 3 are highly exothermic and therefore have equilibrium constants that decrease rapidly with temperature. Reaction 2 is moderately exothermic, and consequently its equilibrium constant shows a moderate decrease with temperature. Reaction 4 is moderately endothermic, and its equilibrium constant increases with increasing temperature. The relationship between temperature and equilibrium constant for these four reactions is depicted in Figure 1 where carbon is assumed to be graphite. Thermodynamic data were taken from Refs. 1 and 2. [Pg.41]

In the region of pure CH4, the equilibrium is governed by Equation 4. For this reaction, the equilibrium constant increases with temperature so that at high enough temperatures there will be appreciable dissociation of CH4 to H2 and graphite. In the lower temperature range considered here, the thermodynamic equilibrium indicates only a very small amount of dissociation so the intersection of the graphite deposition curve with the H2-CH4 line occurs at almost pure CH4. As the temperature increases, the point of intersection will move toward pure H2 on the H2-CH4 line. [Pg.47]

Solid carbon exists as graphite, diamond, and other phases such as the fullerenes, which have structures related to that of graphite. Graphite is the thermodynamically most stable of these allotropes under ordinary conditions. In this section, we see how the properties of the different allotropes of carbon are related to differences in bonding. [Pg.725]

To deposit diamond by CVD, the carbon species must be activated since, at low pressure, graphite is thermodynamically stable and without activation only graphite would be formed. Activation is obtained by two energy-intensive methods high temperature and plasma. CVD processes based on these two methods are continuously expanded and improved and new ones are regularly proposed. [Pg.199]

Such effects are observed inter alia when a metal is electrochemically deposited on a foreign substrate (e.g. Pb on graphite), a process which requires an additional nucleation overpotential. Thus, in cyclic voltammetry metal is deposited during the reverse scan on an identical metallic surface at thermodynamically favourable potentials, i.e. at positive values relative to the nucleation overpotential. This generates the typical trace-crossing in the current-voltage curve. Hence, Pletcher et al. also view the trace-crossing as proof of the start of the nucleation process of the polymer film, especially as it appears only in experiments with freshly polished electrodes. But this is about as far as we can go with cyclic voltammetry alone. It must be complemented by other techniques the potential step methods and optical spectroscopy have proved suitable. [Pg.14]

Thermodynamic information has been obtained in different stages of graphite bisulfate (A5). The results have been interpreted in terms of a model previously applied to alkali-metal-graphite compounds. Part of... [Pg.289]

Thermodynamic considerations postulate BjH to be a better boron source than BCl, in CVD of TaB2Using reaction (f) at < 1200 K deposits with extremely small crystal sizes are obtained on graphite substrates . They contain amorphous B at deposition temperatures < 873 K and are substoichiometric in B above this T. Carbon from the substrate substitutes for B, thereby stabilizing the diboride structure at high deposition T... [Pg.278]

C14-0087. Calculate the standard entropy change at 298 K of each of the following reactions, which are important in the chemistry of coal. Assume that coal has the same thermodynamic properties as graphite. [Pg.1038]

The intercalation compounds of lithium with graphite are very different in their behavior from intercalation compounds with oxides or halcogenides. Intercalation processes in the former compounds occur in the potential region from 0 to 0.4 V vs. the potential of the lithium electrode. Thus, the thermodynamic activity of lithium in these compounds is close to that for metallic lithium. For this reason, lithium intercalation compounds of graphite can be used as negative electrodes in batteries rather than the difficultly of handling metallic lithium, which is difficult to handle. [Pg.446]

The electrochemical intercalation/insertion is not a special property of graphite. It is apparent also with many other host/guest pairs, provided that the host lattice is a thermodynamically or kinetically stable system of interconnected vacant lattice sites for transport and location of guest species. Particularly useful are host lattices of inorganic oxides and sulphides with layer or chain-type structures. Figure 5.30 presents an example of the cathodic insertion of Li+ into the TiS2 host lattice, which is practically important in lithium batteries. [Pg.329]


See other pages where Thermodynamic graphite is mentioned: [Pg.53]    [Pg.389]    [Pg.53]    [Pg.53]    [Pg.389]    [Pg.53]    [Pg.647]    [Pg.236]    [Pg.558]    [Pg.561]    [Pg.565]    [Pg.122]    [Pg.13]    [Pg.13]    [Pg.16]    [Pg.433]    [Pg.77]    [Pg.1136]    [Pg.362]    [Pg.391]    [Pg.395]    [Pg.395]    [Pg.427]    [Pg.442]    [Pg.48]    [Pg.53]    [Pg.6]    [Pg.387]    [Pg.947]    [Pg.44]    [Pg.307]    [Pg.433]    [Pg.434]    [Pg.435]    [Pg.46]    [Pg.196]    [Pg.673]    [Pg.324]    [Pg.121]    [Pg.28]   
See also in sourсe #XX -- [ Pg.21 ]




SEARCH



Graphite , thermodynamic properties

Graphite thermodynamic stability

© 2024 chempedia.info