Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Thermal stability intermediate

This polymer is typical of the aliphatic polyolefins in its good electrical insulation and chemical resistance. It has a melting point and stiffness intermediate between high-density and low-density polyethylene and a thermal stability intermediate between polyethylene and polypropylene. [Pg.268]

Copoly(amide-imides) comprise an important class of copolyimides that have been developed into a commercial product. Incorporating the amide linkage into the PI makes the polymer more tractable than simple Pis, but involves a loss in thermal stability. However, copoly(amide—imides) still possess quite good thermal stabilities, intermediate between those of polyamides and Pis (12). They are relatively inexpensive to synthesize. [Pg.531]

The most common route to alkyl or aryl complexes of the type [AuRL] is by the treatment of a halide complex with an alkyl- or aryllithium reagent. The first reactions of this type were performed (15) in 1959 [Eq. (5)], and the methyl and phenyl compounds were found to have chemical and thermal stabilities intermediate between those of the previously known organopalladium and -platinum complexes. [Pg.42]

The potential of IR ellipsometric spectroscopy (IRES) for investigating surface processes and reactions relevant to gas-solid heterogeneous catalysis is examined, both for single crystal and model dispersed catalytic systems. With it, structural and chemical changes can be followed over a wide range of temperature and gas pressure, allowing one to thermally stabilize intermediates for investigation, and study surface species under conditions close to those in practical catalytic reactions. [Pg.96]

Oligomers end-capped with maleimide rings, which are known as bismaleimide (BMI) resins, exhibit thermal stability intermediate between epoxies and poly-imides. BMI systems are mainly used to fabricate structural composites capable of sustaining temperatures up to 230°C. Specific versions, such as American Cyanamid FM 32 and Ciba-Geigy Kerimid 601 have been developed to prepare adhesive compositions. Fig. 17 displays a typical constitutive unit of various commercial BMI resins based on bismaleimide 38, prepared from maleic anhydride 37 and 4,4 -methylenebisbenzeneamine (MDA) 34. [Pg.255]

Unlike perfluoroaliphatic organometallies, perfluoroolefinic and perfluoro-acetylemc Grignard reagents have a greater thermal stability and can be prepared and used as intermediates at temperatures around 0 C [40]... [Pg.653]

The initial reaction between a ketene and an enamine is apparently a 1,2 cycloaddition to form an aminocyclobutanone adduct (58) (68-76a). This reaction probably occurs by way of an ionic zwitterion intermediate (75). The thermal stability of this adduct depends upon the nature of substituents Rj, R2, R3, and R. The enolic forms of 58 can exist only if Rj and/or R4 are hydrogens. If the enamine involved in the reaction is an aldehydic enamine with no 3 hydrogens and the ketene involved is di-substituted (i.e., R, R2, R3, and R4 are not hydrogens), then the cyclo-butanone adduct is thermally stable. For example, the reaction of dimethyl-ketene (61) with N,N-dimethylaminoisobutene (10) in isopropyl acetate... [Pg.225]

PH3 is an extremely poisonous, highly reactive, colourless gas which has a faint garlic odour at concentrations above about 2 ppm by volume. It is intermediate in thermal stability between NH3 (p. 421) and ASH3 (p. 557). Several convenient routes are available for its preparation ... [Pg.492]

The above technique is limited to compounds of sufficient volatility and thermal stability. The reaction can be made more general by the use of palladium 44), which will reduce an intermediate benzylamine. [Pg.98]

In most of the studies discussed above, except for the meta-linked diamines, when the aromatic content (dianhydride and diamine chain extender), of the copolymers were increased above a certain level, the materials became insoluble and infusible 153, i79, lsi) solution to this problem with minimum sacrifice in the thermal properties of the products has been the synthesis of siloxane-amide-imides183). In this approach pyromellitic acid chloride has been utilized instead of PMDA or BTDA and the copolymers were synthesized in two steps. The first step, which involved the formation of (siloxane-amide-amic acid) intermediate was conducted at low temperatures (0-25 °C) in THF/DMAC solution. After purification of this intermediate thin films were cast on stainless steel or glass plates and imidization was obtained in high temperature ovens between 100 and 300 °C following a similar procedure that was discussed for siloxane-imide copolymers. Copolymers obtained showed good solubility in various polar solvents. DSC studies indicated the formation of two-phase morphologies. Thermogravimetric analysis showed that the thermal stability of these siloxane-amide-imide systems were comparable to those of siloxane-imide copolymers 183>. [Pg.35]

Esters of a-diazoalkylphosphonic acids (95) show considerable thermal stability but react with acids, dienophiles, and triphenylphosphine to give the expected products. With olefinic compounds in the presence of copper they give cyclopropane derivatives (96), but with no such compounds present vinylphosphonic esters are formed by 1,2-hydrogen shift, or, when this route is not available, products such as (97) or (98) are formed, resulting from insertion of a carbenoid intermediate into C—C or C—H bonds. The related phosphonyl (and phosphoryl) azides (99) add to electron-rich alkynes to give 1,2,3-triazoles, from which the phosphoryl group is readily removed by hydrolysis. [Pg.116]

Although the reaction of CHs- radicals with NO in the gas phase has been extensively studied by indirect methods, we are aware of only one report in which the intermediate CH3NO was directly determined, and in this case the reaction was carried out at room temperature [14]. In order to gain insight into the thermal stability of CH3NO, a cursory study was carried out in a Knudsen cell over the temperature range from 25 C to 800°C. [Pg.716]

A particular feature of the whole process is the trade-off between the key intermediates of both mechanistic cycles. While the N—N bond formation (controlled by thermal stability of the mononitrosyl intermediate) is favored by lower temperatures, the 0-0 bond formation step (constrained by endothermic decomposition of the nitrate intermediate) is favored by higher temperatures. Indeed, as revealed by operando IR studies (Figure 2.24), at low temperatures nitrates accumulate on the surface, whereas at high temperatures the surfaces is essentially depleted of the mononitrosyl complexes. The optimal reaction temperature corresponds, therefore, to a subtle balance between the rate of formation of the Cu NO Z surface complex in the early stages, and the rate of decomposition of the CuN03 Z complex in the late stages of the reaction. [Pg.60]

Quite a number of silylnickel and silylenenickel compounds have been reported, and only a few can be cited here2305-2309 Bis(silyl)nickel complexes have been implicated as important intermediates in Ni-catalyzed double silylation of various organic substrates. Using an o-bis(dimethylsilyl)carborane ligand, complex (930) could be isolated and structurally characterized 2310 Its unusual thermal stability is attributed to the advantageous steric and electronic properties of the carboranyl unit. (930) undergoes... [Pg.480]

At present, the problems in thiepin chemistry awaiting solution are (i) how to construct the thiepin skeleton under mild reaction conditions, (ii) what are the structural effects on thermal stability of thiepin, (iii) whether the thianorcaradiene is an intermediate of sulfur extrusion reaction or not, (iv) what is the molecular structure of the thiepin (planar or nonplanar), (v) what is the antiaromaticity of the thiepin ring. [Pg.39]

Thermal stability of the rotanes has been mentioned in most if not all of the above papers 25 30). But note that none of them mention acid-catalyzed rearrangements of rotanes. The preparation of intermediates for such a process is first mentioned for the eventual possibility of obtaining the compound called [6.4] coronane 8733 . [Pg.18]

In order to determine the thermokinetics in experimental runs, the temperature is varied between certain limits depending on the thermal stability of the original components, the intermediates, final products, and by-products. For example, if the optimum temperature is Topt/ the temperature may be varied between Topt 25°C. [Pg.132]


See other pages where Thermal stability intermediate is mentioned: [Pg.379]    [Pg.419]    [Pg.399]    [Pg.39]    [Pg.877]    [Pg.81]    [Pg.389]    [Pg.127]    [Pg.778]    [Pg.152]    [Pg.424]    [Pg.192]    [Pg.43]    [Pg.189]    [Pg.96]    [Pg.267]    [Pg.354]    [Pg.930]    [Pg.58]    [Pg.119]    [Pg.120]    [Pg.53]    [Pg.55]    [Pg.252]    [Pg.733]    [Pg.85]    [Pg.120]    [Pg.238]    [Pg.256]    [Pg.200]    [Pg.170]   
See also in sourсe #XX -- [ Pg.67 ]




SEARCH



Compounds with intermediate thermal stability

Intermediate stabilization

© 2024 chempedia.info