Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

The Lanthanide Contraction

The basic concept is that there is a decrease in radius of the lanthanide ion Ln + on crossing the series from La to Lu. This is caused by the poor screening of the 4f electrons. This causes neighbouring lanthanides to have similar, but not identical, properties, and is discussed in more detail in Section 2.4. [Pg.7]

Question 1.1 Using the information you have been given in Section 1.2, draw up a table comparing (in three columns) the characteristic features of the s-block metals (use group 1 as typical) and the d-block transition metals. [Pg.7]

Coordination polyhedra in Minimise repulsion Directional Minimise repulsion [Pg.7]

Trends in coordination Often constant in block Often constant in block Increase down group [Pg.7]

Donor atoms in complexes Hard preferred Hard and soft Hard preferred [Pg.7]

In the periodic system, the lanthanide group of elements also gives rise to a peculiar phenomenon, called the lanthanide contraction. This phenomenon is the important and progressive decrease in atomic radii and in radii of ions when going from lower to higher atomic numbers in the lanthanide series. Thus lanthanum has the largest atomic radius, and lutetium has the smallest. In Table 3.3, the ionic radii for the lanthanides are given, and the effect described above can be clearly seen in Fig. 3.2. [Pg.57]

In the rows of the periodic system, the valence electrons always shield themselves in an imperfect way from the nuclear charge. This results in an increase in effective nuclear charge, when moving from left to right in a row in the periodic system. The lanthanides show contraction of the atomic and ionic radii, due to the imperfect shielding of the valence f-orbitals. Because there are 14 elements in this series, the effect is more pronounced than other rows of the periodic table. Because the 4f-orbitals are limited in size, the size of the lanthanide ions is defined by their 5 s and 5p orbitals (Platt 2012). [Pg.57]

The binding energy of an electron to its nucleus is proportional to its mass, so the electrons of the lanthanides are bound more strongly and thus the ionic size is reduced more strongly than would be expected from the increase in nuclear charge and orbital penetration (Platt 2012). [Pg.57]

Due to the restricted extension of the 4f orbitals, they cannot overlap with surrounding orbitals of other components. This means that covalent bonding for the lanthanides in their normal oxidation states virtually does not occur. Therefore, in general, the lanthanides are bonded by ionic/electrostatic interactions (Platt 2012). [Pg.57]

Also as a result of the lanthanide contraction, yttrium has an ionic radius comparable to that of the heavier REE species in the holmium-erbium region. If the effective ionic radius (Shannon 1976) of is plotted (0.90 A)., it plots in between element 67 (Ho) and 68 (Er). Scandium (effective ionic radius is 0.745 A), plots outside of the Lanthanide series. As also the outermost electronic arrangement of yttrium is similar to the heavy rare earths, the element behaves chemically like the heavy rare earths. It concentrates during (geo)chemical processes with the heavier REEs, and is difhcult to separate from the heavy REEs. Scandium, on the other hand, has a much smaller atomic radius, and the trivalent ionic size is much smaller than that of the heavy rare earths. Therefore, scandium does not occur in rare earth minerals, and in general has a chemical behavior that is significantiy different from the other rare earth elements (Gupta and Krishnamurthy 2005). [Pg.59]


Crystal Structure and Ionic Radii. Crystal stmcture data have provided the basis for the ionic radii (coordination number = CN = 6), which are summarized in Table 9 (13,14,17). For both and ions there is an actinide contraction, analogous to the lanthanide contraction, with increasing positive charge on the nucleus. [Pg.224]

Chemical Properties. Although the chemical properties of the trivalent lanthanides are quite similar, some differences occur as a consequence of the lanthanide contraction (see Table 3). The chemical properties of yttrium are very similar too, on account of its external electronic stmcture and ionic radius. Yttrium and the lanthanides are typical hard acids, and bind preferably with hard bases such as oxygen-based ligands. Nevertheless they also bind with soft bases, typicaUy sulfur and nitrogen-based ligands in the absence of hard base ligands. [Pg.540]

The effect of the lanthanide contraction on the metal and ionic radii of hafnium has already been mentioned. That these radii are virtually identical for zirconium and hafnium has the result that the ratio of their densities, like that of their atomic weights, is very close to Zr Hf = 1 2.0. Indeed, the densities, the transition temperatures and the neutron-absorbing abilities are the only common properties of these two elements which differ... [Pg.957]

A contraction resulting from the filling of the 4f electron shell is of course not exceptional. Similar contractions occur in each row of the periodic table and, in the d block for instance, the ionic radii decrease by 20.5 pm from Sc to Cu , and by 15 pm from Y to Ag . The importance of the lanthanide contraction arises from its consequences ... [Pg.1234]

By contrast, the ionic radius in a given oxidation state falls steadily and, though the available data are less extensive, it is clear that an actinide contraction exists, especially for the -f3 state, which is closely similar to the lanthanide contraction (see p. 1232). [Pg.1264]

The atomic radii of the second row of d-metals (Period 5) are typically greater than those in the first row (Period 4). The atomic radii in the third row (Period 6), however, are about the same as those in the second row and smaller than expected. This effect is due to the lanthanide contraction, the decrease in radius along the first row of the / block (Fig. 16.4). This decrease is due to the increasing nuclear charge along the period coupled with the poor shielding ability of /-electrons. When the d block resumes (at lutetium), the atomic radius has fallen from 217 pm for barium to 173 pm for lutetium. [Pg.778]

A technologically important effect of the lanthanide contraction is the high density of the Period 6 elements (Fig. 16.5). The atomic radii of these elements are comparable to those of the Period 5 elements, but their atomic masses are about twice as large so more mass is packed into the same volume. A block of iridium, for example, contains about as many atoms as a block of rhodium of the same volume. However, each iridium atom is nearly twice as heavy as a rhodium atom, and so the density of the sample is nearly twice as great. In fact, iridium is one of the two densest elements its neighbor osmium is the other. Another effect of the contraction is the low reactivity—the nobility —of gold and platinum. Because their valence electrons are relatively close to the nucleus, they are tightly bound and not readily available for chemical reactions. [Pg.778]

The atomic radii of the d-block metals are similar but tend to decrease across a series. The lanthanide contraction accounts for the smaller than expected radii and higher densities of the d-block atoms in Period 6. [Pg.778]

FIGURE 16.4 The atomic radii of the d-block elements (in picometers). Notice the similarity of all the values and, in particular, the close similarity between the second and the third rows as a result of the lanthanide contraction. [Pg.778]

Hg is much more dense than Cd, because the decrease in atomic radius that occurs between Z = 58 and Z = 71 (the lanthanide contraction) causes the atoms following the rare earths to he smaller than might have been expected for their atomic masses and atomic numbers. Zn and Cd have densities that are not too dissimilar because the radius of Cd is subject only to a smaller d-block contraction. [Pg.1015]

In the sequence of structures from the large to the small rare-earth elements, the lanthanide contraction is manifested as shown in Figs. 19a and 19b. Within a structure, the cell volume diminishes linearly with the atomic number. If a certain, limiting value is reached, there is... [Pg.363]

The 15 trivalent lanthanide, or/ -block, ions La3+, Ce3+, Pr3+, Nd3+, Pm3+, Sm3+, Eu3+, Gd3+, Tb3+, Dy3+, Ho3+, Er3+, Tm3+, Yb3+, and Lu3+, which may be collectively denoted Ln3+, represent the most extended series of chemically similar metal ions. The progressive filling of the 4/orbitals from La3 + to Lu3 + is accompanied by a smooth decrease in rM with increase in atomic number as a consequence of the increasingly strong nuclear attraction for the electrons in the diffuse / orbitals (the lanthanide contraction). Thus, the nine-coordinate rM decrease from 121.6 to 103.2 pm from La3+ to Lu3+, and the eight-coordinate ionic radii decrease from 116.0 to 97.7 pm from La3+ to Lu3+ (2). Ligand field effects are small by comparison with those observed for the first-... [Pg.59]

As in aqueous solution, the lanthanide contraction favors a change from nine-coordination for the light lanthanides to eight-coordination for the light lanthanides such that [Ln(DMF)8]3+ is the major species when Ln3+ = Ce3+-Nd3+, and that this becomes the only detected species when Ln3+ = Tb3+-Lu3+ in dimethylformamide perchlorate solution (11, 92, 93, 321-323). Thus, Nd3+ is characterized by AH° = -14.9 kJ mol-1, AS0 = -69.1 J K"1 mol-1, and AV° = - 9.8 cm3 mol-1 for the equilibrium shown in Eq. (25) (93). The molar volume of DMF is 72 cm3 mol- and it therefore appears that the substantially smaller magnitude of AV° is a consequence of significant... [Pg.64]

Rotation Angles and Skew Angles in LnPc2 in Relation to the Lanthanide Contraction... [Pg.243]

One of the consequences of the lanthanide contraction is that some of the +3 lanthanide ions are very similar in size to some of the similarly charged ions of the second-row transition metals. For example, the radius of Y3+ is about 88 pm, which is approximately the same as the radius of Ho3+ or Er3 +. As shown in Figure 11.8, the heats of hydration of the +3 ions show clear indication of the effect of the lanthanide contraction. [Pg.389]

Element 114 will be a metal in the same group as Pb, element 82 (18 cm3/mol) Sn, element 50 (18 cm3 /mol) and Ge, element 32(14 cm3 /mol). We note that the atomic volume of Pb and Sn are essentially equal, probably due to the lanthanide contraction. If there is also an actinide contraction, element 114 will have an atomic volume of 18 cm3 / mol. If there is no actinide contraction, we would predict a molar volume of 22 cm3 / mol. This need to estimate atomic volume is what makes the value for density inaccurate. [Pg.188]

The third category is the high coordination number lanthanides and actinides. The trivalent lanthanides show a decrease in with the progressive filling of the 4f orbitals, called the lanthanide contraction. Since the 4f orbitals are shielded by the filled 5s and 5p orbitals, the electronic configuration has no remarkable effect and therefore the variation in rM and an eventual change in coordination number and geometry determine the lability of the 1st coordination shell. [Pg.3]


See other pages where The Lanthanide Contraction is mentioned: [Pg.442]    [Pg.439]    [Pg.540]    [Pg.27]    [Pg.955]    [Pg.978]    [Pg.1206]    [Pg.413]    [Pg.322]    [Pg.784]    [Pg.363]    [Pg.187]    [Pg.204]    [Pg.63]    [Pg.65]    [Pg.66]    [Pg.105]    [Pg.230]    [Pg.222]    [Pg.140]    [Pg.897]    [Pg.206]    [Pg.208]    [Pg.243]    [Pg.200]    [Pg.342]    [Pg.574]    [Pg.546]    [Pg.547]    [Pg.550]    [Pg.53]    [Pg.179]    [Pg.299]   


SEARCH



Error-Balanced Segmented Contracted Gaussian Basis Sets A Concept and Its Extension to the Lanthanides

Lanthanide contraction

Lanthanides lanthanide contraction

The Contract

The Lanthanides

© 2024 chempedia.info