Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

The Chair

FIGURE 10.12 Dimensioning of workstation. (Permission to reproduce figure from ISO 9241-5 1999 is granted by the British Standards Institution.) [Pg.269]

8 Popliteal height 355 (385 with shoes) 490 (520 with shoes) [Pg.269]


Make a molecular model of the chair conformation of cy clohexane and turn it so that you can look down one of the C—C bonds... [Pg.116]

A second but much less stable nonplanar conformation called the boat is shown in Eigure 3 14 Like the chair the boat conformation has bond angles that are approximately tetrahedral and is relatively free of angle strain It is however destabi hzed by the torsional strain associated with eclipsed bonds on four of its carbons The... [Pg.116]

FIGURE 3 14 (a) A ball and spoke model and (b) a space filling model of the boat confor mation of cyclohexane Torsional strain from eclipsed bonds and van der Waals strain involving the flagpole hydrogens (red) make the boat less stable than the chair... [Pg.116]

The various conformations of cyclohexane are m rapid equilibrium with one another but at any moment almost all of the molecules exist m the chair conformation Not more than one or two molecules per thousand are present m the skew boat confer matron Thus the discussion of cyclohexane conformational analysis that follows focuses exclusively on the chair conformation... [Pg.117]

FIGURE 3 17 A guide to representing the orienta tions of the bonds in the chair conformation of cycio hexane... [Pg.118]

A potential energy diagram for nng inversion m cyclohexane is shown m Figure 3 18 In the first step the chair conformation is converted to a skew boat which then proceeds to the inverted chair m the second step The skew boat conformation is an inter mediate in the process of ring inversion Unlike a transition state an intermediate is not a potential energy maximum but is a local minimum on the potential energy profile... [Pg.119]

Ring inversion in methylcyclohexane differs from that of cyclohexane m that the two chair conformations are not equivalent In one chair the methyl group is axial m the other It IS equatorial At room temperature approximately 95% of the molecules of methylcyclohexane are m the chair conformation that has an equatorial methyl group whereas only 5% of the molecules have an axial methyl group... [Pg.120]

The following questions relate to a cyclohexane ring depicted in the chair conformation shown... [Pg.121]

If a disubstituted cyclohexane has two different substituents then the most stable conformation is the chair that has the larger substituent m an equatorial orientation This IS most apparent when one of the substituents is a bulky group such as tert butyl Thus the most stable conformation of cis 1 tert butyl 2 methylcyclohexane has an equatorial tert butyl group and an axial methyl group... [Pg.128]

Section 3 7 Three conformations of cyclohexane have approximately tetrahedral angles at carbon the chair the boat and the skew boat The chair is by far the most stable it is free of torsional strain but the boat and skew boat are not When a cyclohexane ring is present m a compound it almost always adopts a chair conformation... [Pg.134]

The C—H bonds in the chair conformation of cyclohexane are not all equivalent but are divided into two sets of six each called axial and equatorial... [Pg.135]

Conformational inversion (ring flipping) is rapid in cyclohexane and causes all axial bonds to become equatorial and vice versa As a result a monosubstituted derivative of cyclohexane adopts the chair conforma tion in which the substituent is equatorial (see next section) No bonds are made or broken in this process... [Pg.135]

Typical carbon-oxygen bond distances m ethers are similar to those of alcohols (—142 pm) and are shorter than carbon-carbon bond distances m alkanes (—153 pm) An ether oxygen affects the conformation of a molecule m much the same way that a CH2 unit does The most stable conformation of diethyl ether is the all staggered anti conformation Tetrahydropyran is most stable m the chair conformation—a fact that has an important bearing on the structures of many carbohydrates... [Pg.667]

The most stable conformation of 1 3 dioxan 5 ol is the chair form that has its hydroxyl group in an axial orientation Suggest a reasonable explanation for this fact Building a molecular model IS helpful... [Pg.696]

Make a molecular model of the chair conformation of 3 D glucopyranose... [Pg.1038]

Next convert the Haworth formula to the chair conformation that has the CH2OH group equatorial... [Pg.1038]

Axial bond (Section 3 8) A bond to a carbon in the chair conformation of cyclohexane oriented like the six up and down bonds in the following... [Pg.1276]

The 12 hydrogen atoms of cyclohexane do not occupy equivalent positions. In the chair conformation six hydrogen atoms are perpendicular to the average plane of the molecule and six are directed outward from the ring, slightly above or below the molecular plane (see Fig. 1.6). Bonds which are perpendicular to the molecular plane are known as axial bonds, and those which extend outward... [Pg.41]

The HAZOP committee must be composed of people with specific experience related to the process at hand. The chair, or faciUtator, responsible for managing the committee should be highly familiar with the HAZOP procedure and should have excellent committee management skills. This person must ensure that the discussion is focused and productive, and then oversee the paperwork and progress of the work. [Pg.471]

Stereochemistry. Cyclohexane can exist ia two molecular conformations the chair and boat forms. Conversion from one conformation to the other iavolves rotations about carbon—carbon single bonds. Energy barriers associated with this type of rotation are low and transition from one form to the other is rapid. The predominant stereochemistry of cyclohexane has no influence ia its use as a raw material for nylon manufacture or as a solvent. [Pg.407]

The overall picture of the many results which have been obtained with hetero-substituted cyclohexane rings is a very consistent one. Cyclohexane itself in its lowest energy conformation adopts the so-called chair conformation, as depicted in Figure 3 by the two outer formulae (a, b). These are contained in energy wells ca. 42 kJ moP deep. Another conformation, of low abundance in cyclohexane at normal temperatures, but which is important in some substituted derivatives, is the twist form (c, d). This is ca. 22 kJ moP less stable than the chair forms, and it lies on the lowest-energy pathway between them. [Pg.8]

In simple chemical systems, it is often possible to make a good first guess at the dominant reaction pathway [25-28]. An example of such a reaction is the chair-to-boat isomerization in cyclohexane. In that pathway, a clever combination of two torsion angles provides an excellent reaction coordinate for the isomerization reaction [29,30]. [Pg.209]

The most stable conformation of cyclohexane is the chair. Electron diffraction studies in the gas phase reveal a slight flattening of the chair compared with the geometry obtained when tetrahedral molecular models are used. The torsion angles are 55.9°, compared with 60° for the ideal chair conformation, and the axial C—H bonds are not perfectly parallel but are oriented outward by about 7°. The length of the C—C bonds is 1.528 A, the length of the C—H bonds is 1.119 A, and the C—C—C angles are 111.05°. ... [Pg.135]

There is another aspect to the question of the reactivity of the carbonyl group in r ck)hexanone. This has to do with the preference for approach of reactants from the axial ir equatorial direction. The chair conformation of cyclohexanone places the carbonyl coup in an unsynunetrical environment. It is observed that small nucleophiles prefer to roach the carbonyl group of cyclohexanone from the axial direction even though this is 1 more sterically restricted approach than from the equatorial side." How do the ctfcnaices in the C—C bonds (on the axial side) as opposed to the C—H bonds (on the equatorial side) influence the reactivity of cyclohexanone ... [Pg.173]

Endocyclic cyclohexanone enolates with 2-alkyl groups show a small preference (1 1-5 1) for approach of the electrophile from the direction that permits the chair conformation to be maintained. ... [Pg.439]


See other pages where The Chair is mentioned: [Pg.109]    [Pg.98]    [Pg.481]    [Pg.627]    [Pg.223]    [Pg.86]    [Pg.168]    [Pg.116]    [Pg.116]    [Pg.118]    [Pg.122]    [Pg.131]    [Pg.426]    [Pg.42]    [Pg.42]    [Pg.337]    [Pg.240]    [Pg.43]    [Pg.43]    [Pg.261]    [Pg.136]    [Pg.136]    [Pg.141]    [Pg.148]    [Pg.150]   


SEARCH



Chair

Chair conformation The most stable

Chair-Boat Interconversion of Six-Membered Rings in the Solid

Comparing the Stability of Chairs

Placing Groups on the Chair

Rearranging the Deck Chairs

The Dr Lees Chair and Old Chemistry

The Periodic Table (But No Chairs)

© 2024 chempedia.info