Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Thallium 0* states

The relative toxicities of thallium compounds depend on their solubHities and valence states. Soluble univalent thallium compounds, eg, thaHous sulfate, acetate, and carbonate, are especiaHy toxic. They are rapidly and completely absorbed from the gastrointestinal tract, skin peritoneal cavity, and sites of subcutaneous and intramuscular injection. Tb allium is also rapidly absorbed from the mucous membranes of the respiratory tract, mouth, and lungs foHowing inhalation of soluble thallium salts. Insoluble compounds, eg, thaHous sulfide and iodide, are poorly absorbed by any route and are less toxic. [Pg.470]

The capability of zinc to reduce the ions of many metals to theh metallic state is the basis of important appHcations. However, metals are removed from zinc solutions by displacement with finely divided zinc before winning by electrolysis. Gold and silver are displaced from cyanide leach solutions with zinc and the following metals are similarly recovered from various solutions platinum group, cadmium, indium, thallium, and sometimes copper. [Pg.398]

Determination of thallium as chromate Discussion. The thallium must be present in the thallium(I) state. If present as a thallium(III) salt, reduction must be effected (before precipitation) with sulphur dioxide the excess of sulphur dioxide is boiled off. [Pg.469]

In connection with a discussion of alloys of aluminum and zinc (Pauling, 1949) it was pointed out that an element present in very small quantity in solid solution in another element would have a tendency to assume the valence of the second element. The upper straight line in Fig. 2 is drawn between the value of the lattice constant for pure lead and that calculated for thallium with valence 2-14, equal to that of lead in the state of the pure element. It is seen that it passes through the experimental values of aQ for the alloys with 4-9 and 11-2 atomic percent thallium, thus supporting the suggestion that in these dilute alloys thallium has assumed the same valence as its solvent, lead. [Pg.594]

The exhibition of variable valency is indeed a characteristic of transition metals. Main group metal ions such as those of groups 1 or 2 exhibit a single valence state. Other main group metals may show a number of valencies (usually two) which are related by a change in oxidation state of two units. This is typified by the occurrence of lead(iv) and lead(ii) or thallium(iii) and thallium(i). However, all the transition metals exhibit a range of valencies that is generally not limited in this manner. [Pg.18]

For example, photolysis of a suspension of an arylthallium ditrifluoro-acetate in benzene results in the formation of unsymmetrical biphenyls in high yield (80-90%) and in a high state of purity 152). The results are in full agreement with a free radical pathway which, as suggested above, is initiated by a photochemically induced homolysis of the aryl carbon-thallium bond. Capture of the resulting aryl radical by benzene would lead to the observed unsymmetrical biphenyl, while spontaneous disproportionation of the initially formed Tl(II) species to thallium(I) trifluoroacetate and trifluoroacetoxy radicals, followed by reaction of the latter with aryl radicals, accounts for the very small amounts of aryl trifluoroacetates formed as by-products. This route to unsymmetrical biphenyls thus complements the well-known Wolf and Kharasch procedure involving photolysis of aromatic iodides 171). Since the most versatile route to the latter compounds involves again the intermediacy of arylthallium ditrifluoroacetates (treatment with aqueous potassium iodide) 91), these latter compounds now occupy a central role in controlled biphenyl synthesis. [Pg.171]

The utility of thallium(III) salts as oxidants for nonaromatic unsaturated systems is a consequence of the thermal and solvolytic instability of mono-alkylthallium(III) compounds, which in turn is apparently dependent on two major factors, namely, the nature of the associated anion and the structure of the alkyl group. Compounds in which the anion is a good bidentate ligand are moderately stable, for example, alkylthallium dicar-boxylates 74, 75) or bis dithiocarbamates (76). Alkylthallium dihalides, on the other hand, are extremely unstable and generally decompose instantly. Methylthallium diacetate, for example, can readily be prepared by the exchange reaction shown in Eq. (11) it is reasonably stable in the solid state, but decomposes slowly in solution and rapidly on being heated [Eq. (23)]. Treatment with chloride ion results in the immediate formation of methyl chloride and thallium(I) chloride [Eq. (24)] (55). These facts can be accommodated on the basis that the dicarboxylates are dimeric while the... [Pg.174]

Basically, when analysing the band structures, the equivalent observations apply to typical solid state compounds like thallium halides and lead chalcogenides. In studies on the origin of distortion in a-PbO, it was found that the classical theory of hybridization of the lead 6s and 6p orbitals is incorrect and that the lone pair is the result of the lead-oxygen interaction [44]. It was also noted... [Pg.20]

During oxidation of tin(II) ions by hydrogen peroxide, iodine, bromine, mercury(ir) and thallium(III) the induced reduction of cobalt(in) complexes cannot be observed. Therefore, it was concluded that these reactions proceed by 2-equivalent changes in the oxidation states of the reactants. [Pg.577]

The thallium salts 153 are stable to moisture and oxygen both in solution and in the solid state. X-ray crystallography of 153a (R = Ph) revealed a significant separation between the thallium ion and the anionic borate counteranion (B-Tl distance is equal to 425.3 pm) <2001CC2152>. [Pg.622]

The related reaction shown in Equation (104)117 leads to a butterfly arrangement with two thallium ions bridging between two gold atoms, 127. Here, the Tl-Tl distance is 360.27 pm and is thought to contribute significantly to the physical properties of the complex. The compound shows solvent-dependent luminescent behavior in solution as well as in the solid state. [Pg.403]

Thallium may be described as a relativistic alkali metal the downshift in energy of the 65 orbital, due to a combination of relativity and shell structure effect, favours the oxidation state I over III (see 4.2.22). The stability of the oxidation state +1... [Pg.484]

Thallium occurs in soils in both -p3 and -pl oxidation states. Tl + behaves much like Al +, but hydrolyses even more readily and insoluble Tl(OH)3 is formed... [Pg.228]

Other metah—a classification given to seven metals that do not fit the characteristics of transition metals. They do not exhibit variable oxidation states, and their valence electrons are found only on the outer shell. They are aluminum, gallium, indium, tin, thallium, lead, and bismuth. [Pg.37]

Thallium is the 59th most abundant element found in the Earths crust. It is widely distributed over the Earth, but in very low concentrations. It is found in the mineral/ores of crooksite (a copper ore CuThSe), lorandite (TLAsS ), and hutchinsonite (lead ore, PbTl). It is found mainly in the ores of copper, iron, sulfides, and selenium, but not in its elemental metallic state. Significant amounts of thallium are recovered from the flue dust of industrial smokestacks where zinc and lead ores are smelted. [Pg.187]

Two examples of compounds in thallium +1 and +3 oxidation states follow ... [Pg.188]


See other pages where Thallium 0* states is mentioned: [Pg.392]    [Pg.139]    [Pg.143]    [Pg.175]    [Pg.251]    [Pg.432]    [Pg.209]    [Pg.30]    [Pg.241]    [Pg.334]    [Pg.178]    [Pg.382]    [Pg.156]    [Pg.15]    [Pg.24]    [Pg.195]    [Pg.118]    [Pg.118]    [Pg.118]    [Pg.58]    [Pg.1516]    [Pg.249]    [Pg.84]    [Pg.942]    [Pg.99]    [Pg.73]    [Pg.402]    [Pg.404]    [Pg.139]    [Pg.143]    [Pg.484]    [Pg.30]    [Pg.103]    [Pg.68]   
See also in sourсe #XX -- [ Pg.170 ]




SEARCH



Formal oxidation state thallium

Solid state gold-thallium complexes

Thallium ground state electronic configuration

Thallium oxidation state

© 2024 chempedia.info