Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Tetrahydroquinoline, substituted

Sodium borohydride reduction of 4-substituted isoquinolinium salts led to vinylogous cyanamides, ureas, and urethanes, as well as the corresponding tetrahydroquinolines (640). Hydrogenation of /8-acylpyridinium salts (641) to vinylogous ureas was exploited in syntheses of alkaloids (642), leading, for instance, to lupinine, epilupinine, and corynantheidine (643, 644). Similarly, syntheses of dasycarpidone and epidasycarpidone were achieved (645) through isomerization of an a,/0-unsaturated 2-acylindole and cyclization of the resultant enamine. [Pg.337]

The 6-methylacetylamino-l,2,3,4-tetrahydroquinoline, after nitration and separation of isomers, following reduction and deprotection, gave the 7-amino-6-methylamino derivative, which cyclized with cyanogen bromide. Alkylation of the cyclization products afforded inhibitors of thymidylate synthase, 5-substituted 2-amino-l//-l-methyl-5,6,7,8-tetrahydroimidazo[4,5-g]quinolines 136, designed for use in iterative protein crystal analysis (Scheme 42) (92JMC847). [Pg.246]

Substituted 1,2,3,4-tetrahydroquinolines (e.g., 61) are formed with high regio- and stereoselectivity in high yield by intermolecular [A+2] cycloadditions of cationic 2-aza-butadienes and various dienophiles <95CC2137,96SL34>. [Pg.233]

Yadav et al. explored the reaction of substituted anilines with 3,4,6-tri- O-acetyl-D-glucal to offer the tetrahydroquinoline moieties.134 Most yields are around 80% with excellent distereoselectivity and the reaction was carried out in water (Eq. 12.61). The primary disadvantages are that both CeCb and Nal are required in stoichiometric amounts. [Pg.407]

Besides the domino Michael/SN processes, domino Michael/Knoevenagel reactions have also been used. Thus, Obrecht, Filippone and Santeusanio employed this type of process for the assembly of highly substituted thiophenes [102] and pyrroles [103]. Marinelli and colleagues have reported on the synthesis of various 2,4-disubstituted quinolines [104] and [l,8]naphthyridines [105] by means of a domino Michael addition/imine cyclization. Related di- and tetrahydroquinolines were prepared by a domino Michael addition/aldol condensation described by the Hamada group [106]. A recent example of a domino Michael/aldol condensation process has been reported by Brase and coworkers [107], by which substituted tetrahydroxan-thenes 2-186 were prepared from salicylic aldehydes 2-184 and cycloenones 2-185 (Scheme 2.43). [Pg.75]

The antibacterial agent flumequine 280 was synthetized in optically active form by starting with resolution of the two enantiomers of a suitably substituted racemic tetrahydroquinoline through formation of the (lf )-3-bromocamphor-8-sulfonates. After N-alkylation of the (2K)-tetrahydroisoquinoline enantiomer 277 with diethyl ethoxymethylene-malonate to give 278, the quinolizidine system 279 was formed by acylation onto the peri-position. This compound was finally hydrolyzed to afford 280 (Scheme 60) <1999TA1079>. [Pg.41]

The use of cerium(IV) ammonium nitrate (CAN) as a catalyst for an aza-Diels-Alder reaction was reported in two different publications. In one report Perumal and co-workers react a variety of anilines 86 and aldehydes 87 with enamine 88 in the presence of 5 mol% CAN to form a series of tetrahydroquinolines 89. The reactions were performed at room temperature with very short reaction times and in good yields. In addition, the resulting tetrahydroquinolines could be oxidized to the corresponding substituted quinolines using 2.5 eq of CAN in high yields <06TL3589>. [Pg.326]

The asymmetric hydrogenation of quinoline continues to be of interest. Li et al. reported the asymmetric hydrogenation of a variety of 2-substituted-quinolines to the corresponding tetrahydroquinolines using an Ir-catalyst with a BINOL-derived diphosphonite ligand... [Pg.328]

The asymmetric addition of different types of nucleophiles at the C-l position of 3,4-dihydroisoquinolines were highlighted in a number of publications. Schreiber et al. described an enantioselective addition of terminal alkynes 136 to 3,4-dihydroisoquinolinium bromide 137 in the presence of triethylamine, catalytic copper bromide, and QUINAP <06OL143>. The resulting 1-substituted tetrahydroquinolines 138 were isolated in high yield and high enantiomeric excess in most cases. [Pg.332]

Additions to quinoline derivatives also continued to be reported last year. Chiral dihydroquinoline-2-nitriles 55 were prepared in up to 91% ee via a catalytic, asymmetric Reissert-type reaction promoted by a Lewis acid-Lewis base bifunctional catalyst. The dihydroquinoline-2-nitrile derivatives can be converted to tetrahydroquinoline-2-carboxylates without any loss of enantiomeric purity <00JA6327>. In addition the cyanomethyl group was introduced selectively at the C2-position of quinoline derivatives by reaction of trimethylsilylacetonitrile with quinolinium methiodides in the presence of CsF <00JOC907>. The reaction of quinolylmethyl and l-(quinolyl)ethylacetates with dimethylmalonate anion in the presence of Pd(0) was reported. Products of nucleophilic substitution and elimination and reduction products were obtained . Pyridoquinolines were prepared in one step from quinolines and 6-substituted quinolines under Friedel-Crafts conditions <00JCS(P1)2898>. [Pg.246]

Recendy, we found that A -allyl-o-vii rlaniline 44 gave 1,2-dihydroquinoline 45 by normal RCM and developed silyl enol ether-ene metathesis for the novel synthesis of 4-siloxy-1,2-dihydroquinoline and demonstrated a convenient entry to quinolines and 1,2,3,4-tetrahydroquinoline [13], We also have found a novel selective isomerization of terminal olefin to give the corresponding enamide 46 using rathenium carbene catalyst [Ru] and silyl enol ether [14], which represented a new synthetic route to a series of substituted indoles 47 [12], We also succeeded an unambiguous characterization of mthenium hydride complex [RuH] with ACheterocyclic carbene... [Pg.121]

Mechanistically, the Brpnsted acid-catalyzed cascade hydrogenation of quinolines presumably proceeds via the formation of quinolinium ion 56 and subsequent 1,4-hydride addition (step 1) to afford enamine 57. Protonation (step 2) of the latter (57) followed by 1,2-hydride addition (step 3) to the intermediate iminium ion 58 yields tetrahydroquinolines 59 (Scheme 21). In the case of 2-substituted precursors enantioselectivity is induced by an asymmetric hydride transfer (step 3), whereas for 3-substituted ones asymmetric induction is achieved by an enantioselective proton transfer (step 2). [Pg.413]

Reduction of quinolines in acid solution at a lead cathode or by dissolving zinc leads to attack on the heterocyclic ring with the formation of 4,4-coupled products, together with the tetrahydroquinoline [82,83]. In the case of 2- and 4-methyl substituted quinolines, dimeric products are obtained in 10 90 % yields. In these processes, dimerization of the one-electron addition product is in competition with further reduction to give the 1,4-dihydroquinoline, The latter is an enamine and it... [Pg.250]

Partially hydrogenated quinoline cores are also present in some important bioactive compounds. For example, the 4-aza-analogs of Podophyllotoxin, a plant lignan that inhibits microtubule assembly, revealed to be more potent and less toxic anticancer agents. In 2006, Ji s group reported a green multicomponent approach to a new series of these derivatives, consisting of the reaction of either tetronic acid or 1,3-indanedione with various aldehydes and substituted anilines in water under microwave irradiation conditions (Scheme 26) [107]. For this efficient and eco-friendly transformation, the authors proposed a mechanism quite similar to the one that was postulated for the synthesis of tetrahydroquinolines in the precedent section. [Pg.243]

Zhang W, Guo YP, Liu ZG, Jin XL, Yang L, Liu ZL (2005) Photochemically catalyzed Diels-Alder reaction of arylimines with N-vinylpyrrohdinone and N-vinylcarbazole by 2,4,6-triphenylpyrylium salt synthesis of 4-heterocycle-substituted tetrahydroquinoline derivatives. Tetrahedron 61 1325-1333... [Pg.274]

Bismuth(III) Bromide-Catalyzed Synthesis of Substituted Tetrahydroquinoline Derivatives... [Pg.49]

Substituted tetrahydroquinoline derivatives are of considerable interest due to the range of their biological activities and presence in a variety of natural products... [Pg.49]

Scheme 5 Bismuth(III) bromide-catalyzed synthesis of substituted tetrahydroquinoline derivatives... Scheme 5 Bismuth(III) bromide-catalyzed synthesis of substituted tetrahydroquinoline derivatives...
Rogers JL, Emat JJ, Yung H, Mohan RS (2009) Environmentally friendly organic synthesis using bismuth compounds Bismuth(III) bromide catalyzed synthesis of substituted tetrahydroquinoline derivatives. Catal Commun 10 625-626... [Pg.65]


See other pages where Tetrahydroquinoline, substituted is mentioned: [Pg.200]    [Pg.200]    [Pg.103]    [Pg.322]    [Pg.114]    [Pg.146]    [Pg.334]    [Pg.144]    [Pg.151]    [Pg.86]    [Pg.329]    [Pg.332]    [Pg.333]    [Pg.74]    [Pg.180]    [Pg.244]    [Pg.245]    [Pg.27]    [Pg.153]    [Pg.425]    [Pg.161]    [Pg.299]    [Pg.413]    [Pg.13]    [Pg.244]    [Pg.50]    [Pg.50]    [Pg.91]    [Pg.173]   
See also in sourсe #XX -- [ Pg.296 ]




SEARCH



1.2.3.4- Tetrahydroquinolines

Substituted tetrahydroquinolines

Substituted tetrahydroquinolines

© 2024 chempedia.info