Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Terminal alkynes preparation

The regioselectivity of the addition of terminal alkynes to epoxides is improved, when the reagents prepared from the lithiated alkynes and either trifluoroborane or chlorodiethyl-aluminum arc employed (M. Yamaguchi, 1983 S. Danishefsky, 1976). (Ethoxyethynyl)lithium-trifluoroborane (1 1) is a convenient reagent for converting epoxides to y-lactones (M. Naka-tsuka, 1990 see p. 327f. cf. S. Danishefsky, 1976). [Pg.64]

Organoboranes undergo transmetallation. 1-Hexenylboronic acid (438) reacts with methyl acrylate via the transmetallation with Pd(OAc)2, giving methyl 2,4-nonadienoate (439)[399], The ( )-alkenylboranes 440, prepared by the hydroboration of terminal alkynes, are converted into the alkylated ( )-alkenes 441 by treatment with an equivalent amount of Pd(OAc)2 and triethylamine[400]. The ( )-octenylborane 442 reacts with CO in MeOH in the... [Pg.84]

Alkynes undergo stoichiometric oxidative reactions with Pd(II). A useful reaction is oxidative carboiiyiation. Two types of the oxidative carbonyla-tion of alkynes are known. The first is a synthesis of the alkynic carbox-ylates 524 by oxidative carbonylation of terminal alkynes using PdCN and CuCh in the presence of a base[469], Dropwise addition of alkynes is recommended as a preparative-scale procedure of this reation in order to minimize the oxidative dimerization of alkynes as a competitive reaction[470]. Also efficient carbonylation of terminal alkynes using PdCU, CuCI and LiCi under CO-O2 (1 I) was reported[471]. The reaction has been applied to the synthesis of the carbapenem intermediate 525[472], The steroidal acetylenic ester 526 formed by this reaction undergoes the hydroarylalion of the triple bond (see Chapter 4, Section 1) with aryl iodide and formic acid to give the lactone 527(473],... [Pg.97]

The formation of disubstituted alkynes by coupling of terminal alkynes, followed by intramolecular attack of an alcohol or amine, is used for the preparation of benzofurans and indoles. The benzo[il)]furan 356 can be prepared easily by the reaction of o-iodophenol with a terminal alkyne[262]. The 2-substituted indole 358 is prepared by the coupling of 2-ethynylaniline (357) with aryl and alkenyl halides or triflates, followed by Pd(ll)-catalyzed cycliza-tion[263]. [Pg.178]

Many examples of insertions of internal alkynes are known. Internal alkynes react with aryl halides in the presence of formate to afford the trisubstituted alkenes[271,272]. In the reaction of the terminal alkyne 388 with two molecules of iodobenzene. the first step is the formation of the phenylacetylene 389. Then the internal alkyne bond, thus produced, inserts into the phenyl-Pd bond to give 390. Finally, hydrogenolysis with formic acid yields the trisubstituted alkene 391(273,274], This sequence of reactions is a good preparative method for trisubstituted alkenes from terminal alkynes. [Pg.181]

The thioboration of terminal alkynes with 9-(alkylthio)-9-borabicyclo[3.3.1]-nonanes (9-RS-9-BBN) proceeds regio- and stereoselectively by catalysis of Pd(Ph,P)4 to produce the 9-[(Z)-2-(alkylthio)-l-alkeny)]-9-BBN derivative 667 in high yields. The protonation of the product 667 with MeOH affords the Markownikov adduct 668 of thiol to 1-alkyne. One-pot synthesis of alkenyl sulfide derivatives 669 via the Pd-catalyzed thioboration-cross-coupling sequence is also possible. Another preparative method for alkenyl sulfides is the Pd-catalyzed cross-coupling of 9-alkyl-9-BBN with l-bromo-l-phe-nylthioethene or 2-bromo-l-phenylthio-l-alkene[534]. [Pg.225]

The alkenylzirconium 685, prepared by hydrozirconation of a terminal alkyne with hydrozirconocene chloride, reacts with alkenyl halide to afford the conjugated diene 686(545]. The Zr reagent can be used even in the presence of the carbonyl group in 687, which is sensitive to Al and Mg reagents. [Pg.228]

The alkynyl ketones 840 can be prepared by the reaction of acyi chlorides with terminal alkynes, Cul in the presence of Et3N is the cocatalyst[719]. (1-Alkynyl)tributylstannanes are also used for the alkynyl ketone synthesis[720]. The a,. 3-alkynic dithio and thiono esters 842 can be prepared by the reaction of the corresponding acid chloride 841 with terminal alkynes[721,722]. [Pg.253]

Among several propargylic derivatives, the propargylic carbonates 3 were found to be the most reactive and they have been used most extensively because of their high reactivity[2,2a]. The allenylpalladium methoxide 4, formed as an intermediate in catalytic reactions of the methyl propargylic carbonate 3, undergoes two types of transformations. One is substitution of cr-bonded Pd. which proceeds by either insertion or transmetallation. The insertion of an alkene, for example, into the Pd—C cr-bond and elimination of/i-hydrogen affords the allenyl compound 5 (1.2,4-triene). Alkene and CO insertions are typical. The substitution of Pd methoxide with hard carbon nucleophiles or terminal alkynes in the presence of Cul takes place via transmetallation to yield the allenyl compound 6. By these reactions, various allenyl derivatives can be prepared. [Pg.453]

Terminal alkynes react with propargylic carbonates at room temperature to afford the alka-l, 2-dien-4-yne 14 (allenylalkyne) in good yield with catalysis by Pd(0) and Cul[5], The reaction can be explained by the transmetallation of the (7-allenylpailadium methoxide 4 with copper acetylides to form the allenyKalk-ynyl)palladium 13, which undergoes reductive elimination to form the allenyl alkyne 14. In addition to propargylic carbonates, propargylic chlorides and acetates (in the presence of ZnCb) also react with terminal alkynes to afford allenylalkynes[6], Allenylalkynes are prepared by the reaction of the alkynyl-oxiranes 15 with zinc acetylides[7]. [Pg.455]

Solutions of sodium acetylide (HC=CNa) may be prepared by adding sodium amide (NaNH2) to acetylene m liquid ammonia as the solvent Terminal alkynes react similarly to give species of the type RC=CNa... [Pg.370]

PREPARATION OF ALKYNES BY ALKYLATION OF ACETYLENE AND TERMINAL ALKYNES... [Pg.370]

Preparation of Alkynes by Alkylation of Acetylene and Terminal Alkynes... [Pg.371]

The most frequent applications of these procedures he in the preparation of terminal alkynes Because the terminal alkyne product is acidic enough to transfer a proton to amide anion one equivalent of base m addition to the two equivalents required for dou ble dehydrohalogenation is needed Adding water or acid after the reaction is complete converts the sodium salt to the corresponding alkyne... [Pg.373]

In Scheme 10, HMG-CoA reductase inhibitor 92 was synthesized via a Suzuki coupling approach. Hiyama s group also carried out a Hiyama coupling to make the same compound (93TL8263). Vinylsilane 119 was prepared by platinum-catalyzed reaction from terminal alkyne 89. [Pg.19]

The two reactions described above can be applied for the synthesis of symmetrical -acetylenes only. Unsymmetrical bis-acetylenes can be prepared by using the Cadiot-Chodkiew icz reaction For that method a terminal alkyne 1 is reacted with a bromoalkyne 8 in the presence of a copper catalyst, to yield an unsymmetrical coupling product 9 ... [Pg.137]

Because of its generality, acetylide alkylation is an excellent method for preparing substituted alkynes from simpler precursors. A terminal alkyne can be prepared by alkylation of acet dene itself, and an internal alkyne can be prepared by further alkylation of a terminal alkyne. [Pg.273]

Strategy Compare the product with the starting material, and catalog the differences. In this case, we need to add three carbons to the chain and reduce the triple bond. Since the starling material is a terminal alkyne that can be alkylated, we might first prepare the acetylide anion ol 1-pentyne, let it react with 1-bromopropane, and then reduce the product using catalytic hydrogenation. [Pg.274]

The metathesis of ene-ynamides has been investigated by Mori et al. and Hsung et al. [80]. Second-generation ruthenium catalysts and elevated temperatures were required to obtain preparatively useful yields. Witulski et al. published a highly regioselective cyclotrimerization of 1,6-diynes such as 98 and terminal alkynes using the first-generation ruthenium metathesis catalyst 9... [Pg.251]

The present route to (terminal alkynes reported by a group from the Chemical Process Department at the DuPont Pharmaceutical Company.2 This alcohol serves as a convenient starting material for the preparation of 1-acyloxy 4-mesylates 10 (eq 1). [Pg.86]

Previous syntheses of terminal alkynes from aldehydes employed Wittig methodology with phosphonium ylides and phosphonates. 6 7 The DuPont procedure circumvents the use of phosphorus compounds by using lithiated dichloromethane as the source of the terminal carbon. The intermediate lithioalkyne 4 can be quenched with water to provide the terminal alkyne or with various electrophiles, as in the present case, to yield propargylic alcohols, alkynylsilanes, or internal alkynes. Enantioenriched terminal alkynylcarbinols can also be prepared from allylic alcohols by Sharpless epoxidation and subsequent basic elimination of the derived chloro- or bromomethyl epoxide (eq 5). A related method entails Sharpless asymmetric dihydroxylation of an allylic chloride and base treatment of the acetonide derivative.8 In these approaches the product and starting material contain the same number of carbons. [Pg.87]

The hydration of triple bonds is generally carried out with mercuric ion salts (often the sulfate or acetate) as catalysts. Mercuric oxide in the presence of an acid is also a common reagent. Since the addition follows Markovnikov s rule, only acetylene gives an aldehyde. All other triple-bond compounds give ketones (for a method of reversing the orientation for terminal alkynes, see 15-16). With allqmes of the form RC=CH methyl ketones are formed almost exclusively, but with RC=CR both possible products are usually obtained. The reaction can be conveniently carried out with a catalyst prepared by impregnating mercuric oxide onto Nafion-H (a superacidic perfluorinated resinsulfonic acid). ... [Pg.995]

Several methods for stereoselective alkene synthesis are based on boron intermediates. One approach involves alkenylboranes, which can be prepared from terminal alkynes. Procedures have been developed for the synthesis of both Z- and E-alkenes. [Pg.793]

Amatore et al. developed an aqueous cross-coupling reaction of terminal alkynes with 1-iodoalkynes using a water-soluble Pd(0) catalyst prepared in situ from Pd(OAc)2 and sulfonated triphenylphosphine P(C6H4 — m-SCENa (TPPTS) without Cu(I) promoter, giving diynes with moderate yields (43-65%)(Eq. 4.22) 42... [Pg.110]

By employing imines derived from indoles, one can easily prepare p- and y-carbolines (Scheme 6).7 In this chemistry, terminal alkynes can also be... [Pg.437]


See other pages where Terminal alkynes preparation is mentioned: [Pg.745]    [Pg.745]    [Pg.172]    [Pg.206]    [Pg.213]    [Pg.462]    [Pg.393]    [Pg.81]    [Pg.724]    [Pg.41]    [Pg.798]    [Pg.798]    [Pg.1029]    [Pg.1539]    [Pg.237]    [Pg.106]    [Pg.204]    [Pg.1256]    [Pg.101]    [Pg.104]    [Pg.187]    [Pg.367]    [Pg.55]   
See also in sourсe #XX -- [ Pg.463 ]




SEARCH



Alkynes preparation

Preparing Alkynes

Terminal alkynes

© 2024 chempedia.info