Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Terbium lanthanide-coordination chemistry

The bipyridyl chromophore has been extensively used in lanthanide coordination chemistry. In addition to those based on the Lehn cryptand (see Section IV.B.4), a number of acyclic ligands have also employed this group. One such ligand is L17, which binds to lanthanide ions such that one face of the ligand is left open (Scheme 3) (60). As expected, luminescence is extremely weak in water and methanol, but stronger in acetonitrile ( = 0.30, 0.14 for europium and terbium, respectively). In addition, the nature of the counter ion can... [Pg.378]

Due to the presence of hard anionic oxygen atoms, phenolate and carboxylate groups are often employed as donors in lanthanide coordination chemistry. Ligand [L18]4- is reported as an excellent triplet sensitizer for lanthanide luminescence (61). Indeed aqueous lifetimes of 0.57 and 1.61 ms are reported for europium and terbium, respectively quantum yields of 0.20 and 0.95 respectively refer to the efficiency of the energy transfer process alone. [Pg.379]

Lanthanide elements (referred to as Ln) have atomic numbers that range from 57 to 71. They are lanthanum (La), cerium (Ce), praseodymium (Pr), neodymium (Nd), promethium (Pm), samarium (Sm), europium (Eu), gadolinium (Gd), terbium (Tb), dysprosium (Dy), holmium (Ho), erbium (Er), thulium (Tm), ytterbium (Yb), and lutetium (Lu). With the inclusion of scandium (Sc) and yttrium (Y), which are in the same subgroup, this total of 17 elements are referred to as the rare earth elements (RE). They are similar in some aspects but very different in many others. Based on the electronic configuration of the rare earth elements, in this chapter we will discuss the lanthanide contraction phenomenon and the consequential effects on the chemical and physical properties of these elements. The coordination chemistry of lanthanide complexes containing small inorganic ligands is also briefly introduced here [1-5]. [Pg.2]

On the other hand, lanthanides with 100% isotopical purity such as terbium or holmium are preferred to simplify the operation and minimize decoherence in spin qubits. In this respect, the existence, for some lanthanides, of a manifold of electronuclear states can provide additional resources for the implementation of multiple qubit states within the same molecule [31]. All atoms in the first coordination sphere should be oxygen, and the sample should be deuter-ated if the compound contains hydrogen, to avoid interaction with other nuclei spins. Again, POM chemistry has been shown to provide ideal examples of this kind. [Pg.45]

The lanthanide or rare earth elements (atomic numbers 57 through 71) typically add electrons to the 4f orbitals as the atomic number increases, but lanthanum (4f°) is usually considered a lanthanide. Scandium and yttrium are also chemically similar to lanthanides. Lanthanide chemistry is typically that of + 3 cations, and as the atomic number increases, there is a decrease in radius for each lanthanide, known as the lanthanide contraction. Because bonding within the lanthanide series is usually predominantly ionic, the lanthanide contraction often determines the differences in properties of lanthanide compounds and ions. Lanthanide compounds often have high coordination numbers between 6 and 12. see also Cerium Dysprosium Erbium Europium Gadolinium Holmium Lanthanum Lutetium Praseodymium Promethium Samarium Terbium Thulium Ytterbium. [Pg.712]


See other pages where Terbium lanthanide-coordination chemistry is mentioned: [Pg.391]    [Pg.234]    [Pg.356]    [Pg.141]   


SEARCH



Coordination chemistry

Lanthanide chemistry

Lanthanides terbium

Terbium

© 2024 chempedia.info