Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Temperature role

F. Concomitant Retention of Z+A and Persistent Low PS II Efficiency at Warm Temperatures Role of Retained Z+A in Photoinhibition... [Pg.256]

Pr.i [NB premise i] Temperature in gases = that which plays the temperature... role in gases. (Conceptual claim)... [Pg.107]

Pr.2 That which plays the temperature role in gases = mean molecular kinetic energy. (Empirical discovery)... [Pg.107]

Mies, F. H. Julienne, P. S. (1982). The thermodynamic properties of diatomic molecules at elevated temperatures Role of continuum and metastable states. J. Chem. Phys., 77, 6162-6176. [Pg.418]

Liquid viscosity is one of the most difficult properties to calculate with accuracy, yet it has an important role in the calculation of heat transfer coefficients and pressure drop. No single method is satisfactory for all temperature and viscosity ranges. We will distinguish three cases for pure hydrocarbons and petroleum fractions ... [Pg.126]

It is still necessary to consider the role of entropy m irreversible changes. To do this we return to the system considered earlier in section A2.1.4.2. the one composed of two subsystems in themial contact, each coupled with the outside tliroiigh movable adiabatic walls. Earlier this system was described as a function of tliree independent variables, F , and 0 (or 7). Now, instead of the temperature, the entropy S = +. S P will be... [Pg.336]

Equation (A3.3.57) must be supplied with appropriate initial conditions describing the system prior to the onset of phase separation. The initial post-quench state is characterized by the order parameter fluctuations characteristic of the pre-quench initial temperature T.. The role of these fluctuations has been described in detail m [23]. Flowever, again using the renomialization group arguments, any initial short-range correlations should be irrelevant, and one can take the initial conditions to represent a completely disordered state at J = xj. For example, one can choose the white noise fomi (i /(,t,0)v (,t, 0)) = q8(.t -. ), where ( ) represents an... [Pg.739]

The first step consists of the molecular adsorption of CO. The second step is the dissociation of O2 to yield two adsorbed oxygen atoms. The third step is the reaction of an adsorbed CO molecule with an adsorbed oxygen atom to fonn a CO2 molecule that, at room temperature and higher, desorbs upon fomiation. To simplify matters, this desorption step is not included. This sequence of steps depicts a Langmuir-Hinshelwood mechanism, whereby reaction occurs between two adsorbed species (as opposed to an Eley-Rideal mechanism, whereby reaction occurs between one adsorbed species and one gas phase species). The role of surface science studies in fomuilating the CO oxidation mechanism was prominent. [Pg.953]

Song K and Hase W L 1998 Role of state specificity in the temperature- and pressure-dependent unimolecular rate constants for H02->H+02 dissociation J. Phys. Chem. A 102 1292-6... [Pg.1043]

The autocatalator model is in many ways closely related to the FONT system, which has a single first-order exothennic reaction step obeying an Arrhenius temperature dependence and for which the role of the autocatalyst is taken by the temperature of the system. An extension of this is tlie Sal nikov model which supports tliennokinetic oscillations in combustion-like systems [48]. This has the fonn ... [Pg.1115]

The applications of this simple measure of surface adsorbate coverage have been quite widespread and diverse. It has been possible, for example, to measure adsorption isothemis in many systems. From these measurements, one may obtain important infomiation such as the adsorption free energy, A G° = -RTln(K ) [21]. One can also monitor tire kinetics of adsorption and desorption to obtain rates. In conjunction with temperature-dependent data, one may frirther infer activation energies and pre-exponential factors [73, 74]. Knowledge of such kinetic parameters is useful for teclmological applications, such as semiconductor growth and synthesis of chemical compounds [75]. Second-order nonlinear optics may also play a role in the investigation of physical kinetics, such as the rates and mechanisms of transport processes across interfaces [76]. [Pg.1289]

The development of neutron diffraction by C G Shull and coworkers [30] led to the detennination of the existence, previously only a hypothesis, of antiferromagnetism and ferrimagnetism. More recently neutron diffraction, because of its sensitivity to light elements in the presence of heavy ones, played a cmcial role in demonstrating the importance of oxygen content m high-temperature superconductors. [Pg.1382]

Unlike melting and the solid-solid phase transitions discussed in the next section, these phase changes are not reversible processes they occur because the crystal stmcture of the nanocrystal is metastable. For example, titania made in the nanophase always adopts the anatase stmcture. At higher temperatures the material spontaneously transfonns to the mtile bulk stable phase [211, 212 and 213]. The role of grain size in these metastable-stable transitions is not well established the issue is complicated by the fact that the transition is accompanied by grain growth which clouds the inteiyDretation of size-dependent data [214, 215 and 216]. In situ TEM studies, however, indicate that the surface chemistry of the nanocrystals play a cmcial role in the transition temperatures [217, 218]. [Pg.2913]

Another example of the role played by a nonradiative relaxation pathway is found in the photochemistry of octatetraene. Here, the fluorescence lifetime is found to decrease dramatically with increasing temperature [175]. This can be assigned to the opening up of an efficient nonradiative pathway back to the ground state [6]. In recent years, nonradiative relaxation pathways have been frequently implicated in organic photochemistry, and a number of articles published on this subject [4-8]. [Pg.276]


See other pages where Temperature role is mentioned: [Pg.189]    [Pg.189]    [Pg.354]    [Pg.114]    [Pg.87]    [Pg.94]    [Pg.123]    [Pg.807]    [Pg.994]    [Pg.1105]    [Pg.1851]    [Pg.2114]    [Pg.2138]    [Pg.2377]    [Pg.2455]    [Pg.2456]    [Pg.2623]    [Pg.2743]    [Pg.2798]    [Pg.2912]    [Pg.2913]    [Pg.455]    [Pg.543]    [Pg.5]   


SEARCH



Temperature carbon role

The Role of Temperature

The Role of Temperature in HPLC

© 2024 chempedia.info