Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Temperature-programmed surface system

In this contribution, we present computer analyses of several selected temperature-programmed desorption (TPD) and temperature-programmed surface reaction (TPSR) experiments in a microreactor flow system operating under atmospheric pressure. The continuous stirred tank reactor (CSTR) and plug flow reactor (PFR) models have been applied for the design equation as... [Pg.389]

In a recent paper [11] this approach has been generalized to deal with reactions at surfaces, notably dissociation of molecules. A lattice gas model is employed for homonuclear molecules with both atoms and molecules present on the surface, also accounting for lateral interactions between all species. In a series of model calculations equilibrium properties, such as heats of adsorption, are discussed, and the role of dissociation disequilibrium on the time evolution of an adsorbate during temperature-programmed desorption is examined. This approach is adaptable to more complicated systems, provided the individual species remain in local equilibrium, allowing of course for dissociation and reaction disequilibria. [Pg.443]

Effective metal waterside surface passivation (using hydrazine, DEHA, tannin, or similar products) remains an essential requirement of higher temperature or pressure system programs. [Pg.395]

Specific surface areas of the catalysts used were determined by nitrogen adsorption (77.4 K) employing BET method via Sorptomatic 1900 (Carlo-Erba). X-ray difiraction (XRD) patterns of powdered catalysts were carried out on a Siemens D500 (0 / 20) dififactometer with Cu K monochromatic radiation. For the temperature-programmed desorption (TPD) experiments the catalyst (0.3 g) was pre-treated at diflferent temperatures (100-700 °C) under helium flow (5-20 Nml min ) in a micro-catalytic tubular reactor for 3 hours. The treated sample was exposed to methanol vapor (0.01-0.10 kPa) for 2 hours at 260 °C. The system was cooled at room temperature under helium for 30 minutes and then heated at the rate of 4 °C min . Effluents were continuously analyzed using a quadruple mass spectrometer (type QMG420, Balzers AG). [Pg.173]

Temperature Programmed Desorption (TPD). Chemisorbed molecules are bonded to the surface by forces dependent on the nature of the sites. For instance, ammonia will be strongly adsorbed on acid sites, whereas it is only weakly adsorbed on basic sites. Consequently, the adsorbate complex formed with the basic sites will decompose at lower temperatures than that formed with the acid sites. The following example regarding the NH.i-zeolite H-ZSM-5 system will illustrate this. [Pg.108]

Figure 5.19 Formation of amino acids on ice surfaces irradiated in the laboratory (Nature Nature 416, 403-406 (28 March 2002) doi 10.1038/416403a-permission granted). Data were obtained from analysis of the room temperature residue of photoprocessed interstellar medium ice analogue taken after 6 M HCl hydrolysis and derivatization (ECEE derivatives, Varian-Chrompack Chirasil-L-Val capillary column 12 m x 0.25 mm inner diameter, layer thickness 0.12 pirn splitless injection, 1.5 ml min-1 constant flow of He carrier gas oven temperature programmed for 3 min at 70°C, 5°C min-1, and 17.5 min at 180°C detection of total ion current with GC-MSD system Agilent 6890/5973). The inset shows the determination of alanine enantiomers in the above sample (Chirasil-L-Val 25 m, single ion monitoring for Ala-ECEE base peak at 116 a.m.u.). DAP, diaminopentanoic acid DAH, diaminohexanoic acid a.m.u., atomic mass units. Figure 5.19 Formation of amino acids on ice surfaces irradiated in the laboratory (Nature Nature 416, 403-406 (28 March 2002) doi 10.1038/416403a-permission granted). Data were obtained from analysis of the room temperature residue of photoprocessed interstellar medium ice analogue taken after 6 M HCl hydrolysis and derivatization (ECEE derivatives, Varian-Chrompack Chirasil-L-Val capillary column 12 m x 0.25 mm inner diameter, layer thickness 0.12 pirn splitless injection, 1.5 ml min-1 constant flow of He carrier gas oven temperature programmed for 3 min at 70°C, 5°C min-1, and 17.5 min at 180°C detection of total ion current with GC-MSD system Agilent 6890/5973). The inset shows the determination of alanine enantiomers in the above sample (Chirasil-L-Val 25 m, single ion monitoring for Ala-ECEE base peak at 116 a.m.u.). DAP, diaminopentanoic acid DAH, diaminohexanoic acid a.m.u., atomic mass units.
Polymer films were produced by surface catalysis on clean Ni(100) and Ni(lll) single crystals in a standard UHV vacuum system H2.131. The surfaces were atomically clean as determined from low energy electron diffraction (LEED) and Auger electron spectroscopy (AES). Monomer was adsorbed on the nickel surfaces circa 150 K and reaction was induced by raising the temperature. Surface species were characterized by temperature programmed reaction (TPR), reflection infrared spectroscopy, and AES. Molecular orientations were inferred from the surface dipole selection rule of reflection infrared spectroscopy. The selection rule indicates that only molecular vibrations with a dynamic dipole normal to the surface will be infrared active [14.], thus for aromatic molecules the absence of a C=C stretch or a ring vibration mode indicates the ring must be parallel the surface. [Pg.84]

In this paper selectivity in partial oxidation reactions is related to the manner in which hydrocarbon intermediates (R) are bound to surface metal centers on oxides. When the bonding is through oxygen atoms (M-O-R) selective oxidation products are favored, and when the bonding is directly between metal and hydrocarbon (M-R), total oxidation is preferred. Results are presented for two redox systems ethane oxidation on supported vanadium oxide and propylene oxidation on supported molybdenum oxide. The catalysts and adsorbates are stuped by laser Raman spectroscopy, reaction kinetics, and temperature-programmed reaction. Thermochemical calculations confirm that the M-R intermediates are more stable than the M-O-R intermediates. The longer surface residence time of the M-R complexes, coupled to their lack of ready decomposition pathways, is responsible for their total oxidation. [Pg.16]

Another application that is enabled by the bright X-rays at a synchrotron is the measurement of XPS spectra in real time, to follow the dynamics of surface reactions, and in a recent review Baraldi et al. [52] described an impressive series of examples. Here, we discuss a study on the adsorption dynamics of CO on Rh(lll), a system that also serves as an example in the sections on temperature-programmed desorption (see Chapter 2) and infrared spectroscopy (see Chapter 8). [Pg.63]


See other pages where Temperature-programmed surface system is mentioned: [Pg.291]    [Pg.111]    [Pg.112]    [Pg.423]    [Pg.88]    [Pg.698]    [Pg.441]    [Pg.39]    [Pg.228]    [Pg.90]    [Pg.245]    [Pg.171]    [Pg.543]    [Pg.682]    [Pg.132]    [Pg.86]    [Pg.181]    [Pg.338]    [Pg.49]    [Pg.15]    [Pg.18]    [Pg.49]    [Pg.349]    [Pg.112]    [Pg.120]    [Pg.126]    [Pg.179]    [Pg.125]    [Pg.43]    [Pg.678]    [Pg.475]    [Pg.310]    [Pg.227]    [Pg.509]    [Pg.44]    [Pg.126]    [Pg.22]    [Pg.197]    [Pg.130]    [Pg.112]    [Pg.361]   
See also in sourсe #XX -- [ Pg.255 ]




SEARCH



Surface temperatures

System program

Temperature program

Temperature programmed

Temperature programming

Temperature systems

© 2024 chempedia.info