Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Synthesis with electrophilic

Application of 7r-allylpalladium chemistry to organic synthesis has made remarkable progress[l]. As deseribed in Chapter 3, Seetion 3, Tt-allylpalladium complexes react with soft carbon nucleophiles such as maionates, /3-keto esters, and enamines in DMSO to form earbon-carbon bonds[2, 3], The characteristie feature of this reaction is that whereas organometallic reagents are eonsidered to be nucleophilic and react with electrophiles, typieally earbonyl eompounds, Tt-allylpalladium complexes are electrophilie and reaet with nucleophiles such as active methylene compounds, and Pd(0) is formed after the reaction. [Pg.290]

However, the vast majority of research has been devoted to synthesis involving electrophilic substitution on the aromatic ring of hydroquinone. Hence, phenylhydroquinone can be obtained by the reaction of phenyl dia onium salts (18) with hydroquinone (82). [Pg.491]

In the section dealing with electrophilic attack at carbon some results on indazole homocyclic reactivity were presented nitration at position 5 (Section 4.04.2.1.4(ii)), sulfon-ation at position 7 (Section 4.04.2.1.4(iii)) and bromination at positions 5 and 7 (Section 4.04.2.1.4(v)). The orientation depends on the nature (cationic, neutral or anionic) of the indazole. Protonation, for instance, deactivates the heterocycle and directs the attack towards the fused benzene ring. A careful study of the nitration of indazoles at positions 2, 3, 5 or 7 has been published by Habraken (7UOC3084) who described the synthesis of several dinitroindazoles (5,7 5,6 3,5 3,6 3,4 3,7). The kinetics of the nitration of indazole to form the 5-nitro derivative have been determined (72JCS(P2)632). The rate profile at acidities below 90% sulfuric acid shows that the reaction involves the conjugate acid of indazole. [Pg.259]

Intramolecular Pd(0)-catalyzed Stille reaction of organotin reagents with electrophiles leading to C—C a-bond formation in synthesis of heterocycles, particularly, macrocyclic lactones 99JCS(P1)1235. [Pg.203]

This chapter has taken the reader through a number of microwave-assisted methodologies to prepare and further functionalize 2-pyridone containing heterocycles. A survey of inter-, intramolecular-, and pericyclic reactions together with electrophilic, nucleophilic and transition metal mediated methodologies has been exemplified. Still, a number of methods remain to be advanced into microwave-assisted organic synthesis and we hope that the smorgasbord of reactions presented in this chapter will inspire to more successful research in this area. [Pg.27]

Lithiation of 3,5-dibromopyridine with IDA and subsequent reaction with electrophiles provide 4-alkyl-3,5-dibromopyridines in high yield <96TL(37)2565>. The synthesis of aza-anthraquinones 39 via metallation of the pyridine ring of 38 was reported by Epsztajn <96T(52)11025>. [Pg.229]

The mono-silylated or free acetamides, which are liberated during silylation with 22 a, can, furthermore, interfere with any subsequent reaction, e.g. with electrophiles. Thus in the one-pot/one-step silylation, Friedel-Crafts catalyzed, nucleoside synthesis starting from protected sugar derivatives and pyrimidine or purine bases, the mono- or bis-silylated amides such as 22 a can compete with less reactive silylated heterocycHc bases for the intermediate electrophilic sugar cation to form protected 1-acetylamino sugars in up to 49% yield [42, 47]. On silylation with trimethylsilylated urea 23 a the Hberated free urea is nearly insoluble in most solvents, for example CH2CI2, and thus rapidly precipitated [43]. [Pg.12]

The reactions that have been described above have indicated that sulphones interact poorly with electrophiles. However, in 1970, Whiting and coworkers announced the synthesis of aryloxysulphoxonium salts , by the reaction of sulphones with the potent electrophile produced in the thermolysis of aryldiazonium tetrafluoroborates or hexaflu-orophosphates. Fluorobenzenes are by-products of the reaction. In a subsequent paper , Whiting described the reactions of the aryloxysulphoxonium salts, 5, with oxygen and nitrogen nucleophiles. The fundamentals of these are outlined in equations (34) (oxygen nucleophile) and (35) (nitrogen nucleophile). [Pg.941]

There are, however, serious problems that must be overcome in the application of this reaction to synthesis. The product is a new carbocation that can react further. Repetitive addition to alkene molecules leads to polymerization. Indeed, this is the mechanism of acid-catalyzed polymerization of alkenes. There is also the possibility of rearrangement. A key requirement for adapting the reaction of carbocations with alkenes to the synthesis of small molecules is control of the reactivity of the newly formed carbocation intermediate. Synthetically useful carbocation-alkene reactions require a suitable termination step. We have already encountered one successful strategy in the reaction of alkenyl and allylic silanes and stannanes with electrophilic carbon (see Chapter 9). In those reactions, the silyl or stannyl substituent is eliminated and a stable alkene is formed. The increased reactivity of the silyl- and stannyl-substituted alkenes is also favorable to the synthetic utility of carbocation-alkene reactions because the reactants are more nucleophilic than the product alkenes. [Pg.862]

A major advantage of the sequence presented here is that the aldehyde group is protected at the siloxycyclopropane stage, which allows convenient storage of this stable intermediate. Of equal importance is the valuable carbanion chemistry that can be carried out a to the ester function. Efficient substitution can be achieved by deprotonation with LDA and subsequent reaction with electrophiles.12-13-6 This process makes several a-substituted [1-formyl esters available. Other ring opening variants of siloxycyclopropanes - mostly as one-pot-procedures - are contained in Scheme I. They underscore the high versatility of these intermediates for the synthesis of valuable compounds.6 Chiral formyl esters (see Table, entries 2-5) are of special... [Pg.234]

Acyl hydrazides are useful precursors for the synthesis of 1,2,4-triazoles. Reaction of acyl hydrazides 149 with imidoylbenzotriazoles 148 in the presence of catalytic amounts of acetic acid under microwave irradiation afforded 3,4,5-trisubstituted triazoles 150 <06JOC9051>. Treatment of A-substituted acetamides with oxalyl chloride generated imidoyl chlorides, which reacted readily with aryl hydrazides to give 3-aryl-5-methyl-4-substituted[ 1,2,4]triazoles <06SC2217>. 5-Methyl triazoles could be further functionalized through a-lithiation and subsequent reaction with electrophiles. ( )-A -(Ethoxymethylene)hydrazinecarboxylic acid methyl ester 152 was applied to the one-pot synthesis of 4-substituted-2,4-dihydro-3//-1,2,4-triazolin-3-ones 153 from readily available primary alkyl and aryl amines 151 <06TL6743>. An efficient synthesis of substituted 1,2,4-triazoles involved condensation of benzoylhydrazides with thioamides under microwave irradiation <06JCR293>. [Pg.231]

Reactions of salts of 1,2,3-triazole with electrophiles provide an easy access to 1,2,3-triazol-jV-yl derivatives although, usually mixtures of N-l and N-2 substituted triazoles are obtained that have to be separated (see Section 5.01.5). Another simple method for synthesis of such derivatives is addition of 1,2,3-triazole to carbon-carbon multiple bonds (Section 5.01.5). N-l Substituted 1,2,3-triazoles can be selectively prepared by 1,3-dipolar cycloaddition of acetylene or (trimethylsilyl)acetylene to alkyl or aryl azides (Section 5.01.9). [Pg.136]


See other pages where Synthesis with electrophilic is mentioned: [Pg.559]    [Pg.239]    [Pg.58]    [Pg.102]    [Pg.541]    [Pg.541]    [Pg.580]    [Pg.581]    [Pg.586]    [Pg.586]    [Pg.598]    [Pg.602]    [Pg.636]    [Pg.636]    [Pg.726]    [Pg.730]    [Pg.766]    [Pg.789]    [Pg.792]    [Pg.793]    [Pg.862]    [Pg.885]    [Pg.31]    [Pg.456]    [Pg.165]    [Pg.199]    [Pg.941]    [Pg.142]    [Pg.100]    [Pg.384]    [Pg.118]    [Pg.83]    [Pg.106]    [Pg.41]    [Pg.64]   


SEARCH



Electrophiles synthesis

With Electrophiles

© 2024 chempedia.info