Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Synthesis template effects

The expression template reaction indicates mostly a reaction in which a complexed me) ion holds reactive groups in the correct orientation to allow selective multi-step reactions. T1 template effect of the metal is twofold (i) polymerization reactions are suppressed, since th local concentration of reactants around the metal ion is very high (ii) multi-step reactions are possible, since the metal holds the reactants together. In the following one-step synthesis eleven molecules (three ethylenediamine — en , six formaldehyde, and two ammonia molecules) react with each other to form one single compound in a reported yield of 95%. It is ob vious that such a reaction is dictated by the organizing power of the metal ion (I.I. Creasei 1977),... [Pg.248]

Chelation itself is sometimes useful in directing the course of synthesis. This is called the template effect (37). The presence of a suitable metal ion facihtates the preparation of the crown ethers, porphyrins, and similar heteroatom macrocycHc compounds. Coordination of the heteroatoms about the metal orients the end groups of the reactants for ring closure. The product is the chelate from which the metal may be removed by a suitable method. In other catalytic effects, reactive centers may be brought into close proximity, charge or bond strain effects may be created, or electron transfers may be made possible. [Pg.393]

The template effects of potassium and lithium ions are responsible for the efficiency of the synthesis of macrocyclic ligands in 18-CROWN-6 and2,2.7,7,12,12,17,l 7-OCTAMETHYL-21,22,23,24-TETRAOXAPER-HYDROQUATERENE. [Pg.129]

Numerous other methods exist for making the simple crowns. Many of these methods are compared in Sect. 3.1 which deals with variations in the synthesis of 18-crown-6. Further commentary on the influence of templating ions on the synthesis of crown ethers may be found in Chap. 2, which deals with various aspects of the template effect. [Pg.10]

The one-pot synthesis of 9 described above appears to afford only modest yields of azacrowns. One might wonder why any crown at all would be formed under non-high dilution conditions intended to yield only open-chained material. Vogtle suggests that this can be explained in terms of template, steric and entropy effects . These factors are of doubtless significance, but it is interesting to note that in the synthesis of poly-azamacrocycles, Richman and Atkins found that there was no significant template effect observed. The question of the template effect in Ihe syntheses of 9 has recently been addressed by Kulstad and Malmsten They conclude that the formation of 9 is assisted by the presence of alkali metal cations. [Pg.161]

It is interesting to note that although the first examples of template effects were observed in nitrogen macrocycles (see chapter 2) no template effect appears to operate in the synthesis of 72. Richman and Atkins note this in their original report . The authors replaced the sodium cation with tetramethylammonium cations and still obtained greater than 50% yield of tetra-N-tosyl-72. Shaw considered this problem and suggested that because of the bulky N-tosyl groups, .. . the loss of internal entropy on cyclization is small He offered this as an explanation for the apparent lack of a template effect in the cyclization. [Pg.163]

Template effects have been used in rotaxane synthesis to direct threading of the axle through the wheel. Since macrocycHc compounds such as cyclodextrins, crown ethers, cyclophanes, and cucurbiturils form stable complexes with specific guest molecules, they have been widely used in the templated synthesis of rotax-anes as ring (wheel) components. Here, we briefly discuss macrocycles used in the synthesis of rotaxane dendrimers and their important features. [Pg.115]

For the synthesis of MgPz (2), the alkylated maleonitrile was treated with Mg butanolate. Because of the template effect of magnesium, maleonitrile molecules cyclotetramerize to form magnesium porphyrazine. MgPz is soluble in number of common solvents like chloroform, acetone etc. and little soluble in ethanol and methanol. The absence of CN peaks in IR spectram can easily be attributed to the cyclotetramerization, and the only strong peak was observed at 2,922 cm for C-H stretching vibration of 3-metylbutane groups. [Pg.379]

The use of metals for prearranging reaction centers as neighboring groups has a special value in the production of macrocycles (template effect). Although these ligands can be sometimes prepared directly, the addition of metal ion during the synthesis will often increase the yield, modify the stereochemical nature of the product, or even be essential in the buildup of the macrocycle. There have been few mechanistic studies of these processes. The alkali and alkaline-earth metal ions can promote the formation of benzo[18]crown-6 in methanol ... [Pg.301]

The synthesis of oxygen heterocycles in which cyclization onto a pendant alkyne is a key step has also been achieved. Reaction (7.36) shows an example of iodoacetal 29 cyclization at low temperature that afforded the expected furanic derivative in moderate Z selectivity [47]. A nice example of Lewis acid complexation which assists the radical cyclization is given by aluminium tris(2,6-diphenyl phenoxide) (ATPH) [48]. The (3-iodoether 30 can be com-plexed by 2 equiv of ATPH, which has a very important template effect, facilitating the subsequent radical intramolecular addition and orienting the (TMS)3SiH approach from one face. The result is the formation of cyclization products with Z selectivity and in quantitative yield (Reaction 7.37). [Pg.159]

Higher yields are obtained when the reaction rate is increased by using dipolar aprotic solvents, with the possible operation of a template effect (77) of a precomplexed cation (64). Again, this shows that high dilution techniques are not necessary in many cases, but they would certainly increase the yields. Synthesis of polyether-sulfides are generally facilitated by the greater reactivity of — S compared to — O- in nucleophilic displacement reactions. However, the yield is low when path b) is followed (74). [Pg.33]

A template effect by solvent was found in the synthesis of self-assembled capsules. Experimental evidence shows that the solvent molecules control the covalent bond formation through molecular recognition within the monomeric tetrahedral intermediate. It is proposed that solvation effects can be treated as a subset of molecular recognition events (Tokunaga et al., 1998). [Pg.83]

The highest flexibility for a variation of the functional group and the chains X and Y (i.e. the size of the rim of the lamp shade) will be realiad when the synthesis of 3 is convergent and modular (Scheme 1). Amide bonds can easily be formed in macrocyclizations [13], therefore macrocyclic diamines 7 and diacyl dichlorides 8 had to be prepared. For the synthesis of macrocyclic diamines 7, also a large number of reactions are known. However, in this case a reduction of a macrocyclic diamide could not be achieved [11]. Therefore, another route was used the formation of macrocyclic diimines 6 (bis-Schiff bases) followed by NaBH4 reduction to the macrocyclic diamines 7. This approach has the advantage that for the construction of macrocyclic diimines 6, the metal ion template effect [14] may be exploited. [Pg.63]

Liquid-liquid PTC would seem to be convenient for the synthesis of crown ethers and derivatives. But most still use conventional conditions,28,29 probably because the synthesis of macrocyclic crown ethers gives better results when Na+ or K+ ions are involved. These ions can induce a template effect with the polyethyleneoxy chain 63. [Pg.195]

Template reactions between a-diketones and diamines have been used for the synthesis of complexes of macrocyclic ligands such as (38)78 and (39).79 Some insight into the mechanism of the formation of these macrocycles has been provided by some recent work which shows the value of the thermodynamic template effect (Scheme 6).80... [Pg.162]

Stereoselective intramolecular conjugate addition reactions (Scheme 4) of dithiane anions tethered to an a,/ -unsaturated nitrile have been developed to advantage for the synthesis of axially substituted indolizidines and quinolizidines.81 The control of axial nitrile orientation by a peg-in-a-pocket template effect has been discussed. [Pg.340]

Scheme l Synthesis of a catenate based on a Cu(I)-mediated template effect. The catenane can be liberated by demetallation with cyanide. [Pg.174]

Scheme 10 Synthesis of amide rotaxanes by a template effect based on the formation of... Scheme 10 Synthesis of amide rotaxanes by a template effect based on the formation of...

See other pages where Synthesis template effects is mentioned: [Pg.116]    [Pg.378]    [Pg.12]    [Pg.13]    [Pg.32]    [Pg.339]    [Pg.597]    [Pg.675]    [Pg.723]    [Pg.72]    [Pg.219]    [Pg.92]    [Pg.160]    [Pg.386]    [Pg.479]    [Pg.103]    [Pg.210]    [Pg.212]    [Pg.4]    [Pg.35]    [Pg.57]    [Pg.116]    [Pg.177]    [Pg.217]    [Pg.186]    [Pg.177]    [Pg.193]    [Pg.200]   


SEARCH



Synthesis The Template Effect and High Dilution

Synthesis templated

Template Effects for the Syntheses of Rotaxanes, Catenanes, and Knots

Template effect cryptand synthesis

Template effects in synthesis

Template effects mesoporous oxides synthesis

Template effects zeolite synthesis

Template synthesis

Templating effect

© 2024 chempedia.info