Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Synthesis chemoselective

Selectivity between secondary and tertiary alcohols by reagent Corey s longifolene synthesis Chemoselectivity in Enol and Enolate Formation... [Pg.9]

Major advances have been made in enantioselective intramolecular C-H insertion in a relatively short space of time. Because of the superiority of rhodium catalysts over copper catalysts for C-H insertion, the focus has been very much on development of chiral versions of the former. Both the structure of the diazo precursors and the ligands on the catalyst can have a profound influence on di-astereoselectivity and enantioselectivity, two important determinants on the efficacy of C-H insertion in stereoselective synthesis. Chemoselectivity is another control feature on which catalyst design can have a major influence. [Pg.542]

Jacobi von Wangelin A, Neumann H, Gordes D et al (2003) Multicomponent coupling reactions for organic synthesis chemoselective reactions with amide-aldehyde mixtures. Chem Eur J 9 4286 294... [Pg.71]

The wM-diacetate 363 can be transformed into either enantiomer of the 4-substituted 2-cyclohexen-l-ol 364 via the enzymatic hydrolysis. By changing the relative reactivity of the allylic leaving groups (acetate and the more reactive carbonate), either enantiomer of 4-substituted cyclohexenyl acetate is accessible by choice. Then the enantioselective synthesis of (7 )- and (S)-5-substituted 1,3-cyclohexadienes 365 and 367 can be achieved. The Pd(II)-cat-alyzed acetoxylactonization of the diene acids affords the lactones 366 and 368 of different stereochemistry[310]. The tropane alkaloid skeletons 370 and 371 have been constructed based on this chemoselective Pd-catalyzed reactions of 6-benzyloxy-l,3-cycloheptadiene (369)[311]. [Pg.70]

Chemoselective C-alkylation of the highly acidic and enolic triacetic acid lactone 104 (pAl, = 4.94) and tetronic acid (pA, = 3.76) is possible by use of DBU[68]. No 0-alkylation takes place. The same compound 105 is obtained by the regioslective allylation of copper-protected methyl 3,5-dioxohexano-ate[69]. It is known that base-catalyzed alkylation of nitro compounds affords 0-alkylation products, and the smooth Pd-catalyzed C-allylation of nitroalkanes[38.39], nitroacetate[70], and phenylstilfonylnitromethane[71] is possible. Chemoselective C-allylation of nitroethane (106) or the nitroacetate 107 has been applied to the synthesis of the skeleton of the ergoline alkaloid 108[70]. [Pg.305]

Hydroxylysine (328) was synthesized by chemoselective reaction of (Z)-4-acet-oxy-2-butenyl methyl carbonate (325) with two different nucleophiles first with At,(9-Boc-protected hydroxylamine (326) under neutral conditions and then with methyl (diphenylmethyleneamino)acetate (327) in the presence of BSA[202]. The primary allylic amine 331 is prepared by the highly selective monoallylation of 4,4 -dimethoxybenzhydrylamine (329). Deprotection of the allylated secondary amine 330 with 80% formic acid affords the primary ally-lamine 331. The reaction was applied to the total synthesis of gabaculine 332(203]. [Pg.334]

Addition to Carbonyl Compounds. Unlike Grignard and alkykitliium compounds, trialkylboranes are inert to carbonyl compounds. The air-catalyzed addition to formaldehyde is exceptional (373). Alkylborates are more reactive and can transfer alkyl groups to acyl halides. The reaction provides a highly chemoselective method for the synthesis of ketones (374). [Pg.319]

Chemoselective reduction of a,(3-epoxy carbonyl compounds to aldols and their analogs by organoseleniums and its application to natural product synthesis 98YGK736. [Pg.243]

Scheme 4 outlines the synthesis of key intermediate 7 in its correct absolute stereochemical form from readily available (S)-(-)-malic acid (15). Simultaneous protection of the contiguous carboxyl and secondary hydroxyl groups in the form of an acetonide proceeds smoothly with 2,2 -dimethoxypropane and para-toluene-sulfonic acid and provides intermediate 26 as a crystalline solid in 75-85 % yield. Chemoselective reduction of the terminal carboxyl group in 26 with borane-tetrahydrofuran complex (B H3 THF) affords a primary hydroxyl group that attacks the proximal carbonyl group, upon acidification, to give a hydroxybutyrolactone. Treat-... [Pg.237]

The selectivity for two-alkyne annulation can be increased by involving an intramolecular tethering of the carbene complex to both alkynes. This was accomplished by the synthesis of aryl-diynecarbene complexes 115 and 116 from the triynylcarbene complexes 113 and 114, respectively, and Danishefsky s diene in a Diels-Alder reaction [70a]. The diene adds chemoselectively to the triple bond next to the electrophilic carbene carbon. The thermally induced two-alkyne annulation of the complexes 115 and 116 was performed in benzene and yielded the steroid ring systems 117 and 118 (Scheme 51). This tandem Diels-Alder/two-alkyne annulation, which could also be applied in a one-pot procedure, offers new strategies for steroid synthesis in the class O—>ABCD. [Pg.149]

Scheme 94 Total synthesis of the natural compound dehydrohomoancepsenolide (473) through sequential application of chemoselective ruthenium-catalyzed RCM and tungsten-catalyzed alkyne homodimerization [191]... Scheme 94 Total synthesis of the natural compound dehydrohomoancepsenolide (473) through sequential application of chemoselective ruthenium-catalyzed RCM and tungsten-catalyzed alkyne homodimerization [191]...
The field of alkaloid synthesis via tandem cyclizations favors the application of (TMSlsSiH over other radical-based reagents, due to its very low toxicity and high chemoselectivity. For example, cyclization of the iodoarylazide 102, mediated by (TMSlsSiH under standard experimental conditions, produced the N-Si(TMS)3 protected alkaloid 103 that after washing with dilute acid afforded the amine 104 in an overall 83% yield from 102 (Reaction 81). ° The formation of the labile N-Si(TMS)3 bond was thought to arise from the reaction of the product amine 104 with the by-product (TMSlsSil. The skeletons of ( )-horsfiline, ( )-aspidospermidine and (+ )-vindoline have been achieved by this route. - ... [Pg.156]

Recently Lin and coworkers have developed a selective synthesis of N-acyl and 0-acyl propanolol vinyl derivatives by enzyme-catalyzed acylation of propanolol using divinyl dicarboxylates with different carbon chain lengths (Scheme 7.10) [24]. Lipase AY30 in diisopropyl ether demonstrated high chemoselectivity toward the amino... [Pg.177]

Analogous results were obtained for enol ether bromination. The reaction of ring-substituted a-methoxy-styrenes (ref. 12) and ethoxyvinylethers (ref. 10), for example, leads to solvent-incorporated products in which only methanol attacks the carbon atom bearing the ether substituent. A nice application of these high regio-and chemoselectivities is found in the synthesis of optically active 2-alkylalkanoic acids (ref. 13). The key step of this asymmetric synthesis is the regioselective and chemoselective bromination of the enol ether 4 in which the chiral inductor is tartaric acid, one of the alcohol functions of which acts as an internal nucleophile (eqn. 2). [Pg.104]

Regioselective anbd Chemoselective Synthesis of Halohydrins by Cleavage of Oxiranes with Metal Halides," Bonini. C. Righi, G. Synthesis, 1994, 225... [Pg.267]

The published synthesis uses (28) with acetylene itself, the acid group being added later. Note that the carboxyl at ion is chemoselective, the dianion of (29) being the reagent (cf p T129). Synthesis ... [Pg.174]

Active heterogeneous catalysts have been obtained. Examples include titania-, vanadia-, silica-, and ceria-based catalysts. A survey of catalytic materials prepared in flames can be found in [20]. Recent advances include nanocrystalline Ti02 [24], one-step synthesis of noble metal Ti02 [25], Ru-doped cobalt-zirconia [26], vanadia-titania [27], Rh-Al203 for chemoselective hydrogenations [28], and alumina-supported noble metal particles via high-throughput experimentation [29]. [Pg.122]

Searching for a method of synthesis of enantiopure lamivudine 1, the compound having a monothioacetal stereogenic centre, Rayner et al. investigated a lipase-catalysed hydrolysis of various racemic a-acetoxysulfides 2. They found out that the reaction was both chemoselective (only the acetate group was hydrolysed with no detectable hydrolysis of the other ester moieties) and stereoselective. As a result of the kinetic resolution, enantiomerically enriched unreacted starting compounds were obtained. However, the hydrolysis products 3 were lost due to decomposition." In this way, the product yields could not exceed 50% (Equation 1). The product 2 (R = CH2CH(OEt)2) was finally transformed into lamivudine 1 and its 4-epimer. ... [Pg.160]

In this chapter we describe a novel, safe and efficient large-scale synthetic approach to tricycle thienobenzazepines. The key steps in the synthesis include a chemoselective hydrogenation of an aryl-nitro functionality in the presence of a 3-bromo thiophene and a subsequent palladium-catalyzed intramolecular aminocarbonylation telescoped sequentially after simple catalyst and solvent exchange. [Pg.62]

In synthesis, the principal factors that affect the choice of a reducing agent are selectivity among functional groups (chemoselectivity) and stereoselectivity. Chemo-selectivity can involve two issues. One may wish to effect a partial reduction of a particular functional group or it may be necessary to reduce one group in preference to another,78 In the sections that follow, we consider some synthetically useful partial and selective reductions. [Pg.401]

Scheme 24) [38]. Chemoselective enolization of the less substituted enone moiety under hydrogenation conditions accompanied by subsequent aldol reaction provided the corresponding hydroxyl-enones, such as 87-89, which could be converted to various building blocks for polypropionate synthesis. p-Me2N styryl vinyl enone also was employed successfully as an enolate precursor, as demonstrated by the formation of hydroxy enone 90. [Pg.129]

The Pd°-catalyzed transformation of enediynes represents a highly efficient and effective approach for the synthesis of polycyclic compounds, with different ring sizes being obtained by a variation of the tether [129]. In this respect, reaction of 6/1-270 led to the tricyclic product 6/1-271 as a single diastereomer. The initial step is a chemoselective hydropalladation of the propargylic ester moiety in 6/1-270 to give an alkenyl-Pd-species, according to the mechanism depicted in Scheme 6.71. A hexatriene is formed as a byproduct. [Pg.404]


See other pages where Synthesis chemoselective is mentioned: [Pg.186]    [Pg.146]    [Pg.186]    [Pg.146]    [Pg.393]    [Pg.173]    [Pg.438]    [Pg.212]    [Pg.475]    [Pg.657]    [Pg.391]    [Pg.270]    [Pg.302]    [Pg.348]    [Pg.358]    [Pg.472]    [Pg.133]    [Pg.176]    [Pg.37]    [Pg.86]    [Pg.83]    [Pg.159]    [Pg.244]    [Pg.1091]    [Pg.25]    [Pg.155]    [Pg.139]    [Pg.533]   
See also in sourсe #XX -- [ Pg.51 ]




SEARCH



Chemoselective

Chemoselectivity

Epoxides Chemoselective synthesis

Manganese Organometallics for the Chemoselective Synthesis of Polyfunctional Compounds

Synthesis chemoselectivity

Synthesis chemoselectivity

Synthesis of Peptides by Chemoselective Ligation

© 2024 chempedia.info