Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Synchronous bimolecular nucleophilic

The synchronous bimolecular mechanism for aromatic nucleophilic substitution involves unfavorable geometry (bonds made and broken are both in the plane of the ring and backside attack is not possible) and unfavorable energetics (one high-energy step is required... [Pg.155]

Bimolecular reactions of aniline with /V-acyloxy-/V-alkoxyamides are model Sn2 processes in which reactivity is dictated by a transition state that resembles normal Sn2 processes at carbon. Electronic influences of substituents support a non-synchronous process which has strong charge separation at the transition state and which is subject to steric effects around the reactive centre, at the nucleophile but not on the leaving group. The sp3 character of nitrogen and disconnection between the amino group and the amide carbonyl renders these reactions analogous to the displacement of halides in a-haloketones. [Pg.81]

The basic classification of nucleophilic substitutions is founded on the consideration that when a new metal complex is formed through the breaking of a coordination bond with the first ligand (or water) and the formation of a new coordination bond with the second ligand, the rupture and formation of the two bonds can occur to a greater or lesser extent in a synchronons manner. When the mpture and the formation of the bonds occur in a synchronous way, the mechanism is called substitution nucleophilic bimolecular (in symbols Sn2). On the other extreme, when the rupture of the first bond precedes the formation of the new one, the mechanism is called substitution nucleophilic unimolecular (in symbols SnI). Mechanisms Sn2 and SnI are only limiting cases, and an entire range of intermediate situations exists. [Pg.219]

The nomenclature used in describing bimolecular electrophilic substitutions involving cyclic transition states reflects, in part, the above-mentioned difficulty. Ingold3 has adopted the nomenclature of Winstein et al.1 and refers to such substitutions as SEi, but to the present author this is not a particularly appropriate choice since it does not indicate the bimolecular nature of the substitution. Dessy et al.8 have used the term SF2 to describe a mechanism, such as that in reaction (5), in which a four-centred transition state is formed, but not only is such a term too restricted, it also provides no indication that the mechanism is one of electrophilic substitution. The view of Reutov4 is that the cyclic, synchronous mechanism is very close to the open mechanism and that both can be described as SE2 mechanisms. Dessy and Paulik9 used the term nucleophilic assisted mechanisms to describe these cyclic, synchronous mechanisms and Reutov4,10 has recently referred to them in terms of internal nucleophilic catalysis , internal nucleophilic assistance , and nucleophilic promotion . Abraham, et al,6 have attempted to reconcile these various descriptions and have denoted such mechanisms as SE2(cyclic). [Pg.28]


See other pages where Synchronous bimolecular nucleophilic is mentioned: [Pg.424]    [Pg.408]    [Pg.408]    [Pg.887]    [Pg.27]    [Pg.128]    [Pg.273]    [Pg.328]   


SEARCH



Bimolecular nucleophilic

Synchroner

Synchronicity

Synchronizing

Synchronous

© 2024 chempedia.info