Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Symmetric solvent case

III.c. Evaluation of Partition-Function Ratios for Isotopic Solute Species. The Symmetric Solvent Case. [Pg.154]

The idea of kinetic versus thermodynamic control can be illustrated by discussing briefly the case of formation of enolate anions from unsymmetrical ketones. This is a very important matter for synthesis and will be discussed more fully in Chapter 1 of Part B. Most ketones, highly symmetric ones being the exception, can give rise to more than one enolate. Many studies have shown tiiat the ratio among the possible enolates that are formed depends on the reaction conditions. This can be illustrated for the case of 3-methyl-2-butanone. If the base chosen is a strong, sterically hindered one and the solvent is aptotic, the major enolate formed is 3. If a protic solvent is used or if a weaker base (one comparable in basicity to the ketone enolate) is used, the dominant enolate is 2. Enolate 3 is the kinetic enolate whereas 2 is the thermodynamically favored enolate. [Pg.216]

In general, it may be said that enantiomers have identical properties in a symmetrical environment, but their properties may differ in an unsymmetrical environment. Besides the important differences previously noted, enantiomers may react at different rates with achiral molecules if an optically active catalyst is present they may have different solubilities in an optically active solvent., they may have different indexes of refraction or absorption spectra when examined with circularly polarized light, and so on. In most cases these differences are too small to be useful and are often too small to be measured. [Pg.126]

Silyi enol ethers can be dimerized to symmetrical 1,4-diketones by treatment with Ag20 in DMSO or certain other polar aprotic solvents." The reaction has been performed with R , R = hydrogen or alkyl, though best yields are obtained when r = r = H. In certain cases, unsymmetrical 1,4-diketones have been prepared by using a mixture of two silyi enol ethers. Other reagents that have been used to achieve either symmetrical or cross-coupled products are iodosobenzene-Bp3-Et20," ceric ammonium nitrate," and lead tetraacetate." If R =0R (in which case the substrate is a ketene silyi acetal), dimerization with TiCU leads to a dialkyl succinate (34, r =0R)." ... [Pg.1543]

The molecular modelling approach, taking into account the pyruvate—cinchona alkaloid interaction and the steric constraints imposed by the adsorption on the platinum surface, leads to a reasonable explanation for the enantio-differentiation of this system. Although the prediction of the complex formed between the methyl pyruvate and the cinchona modifiers have been made for an ideal case (solvent effects and a quantum description of the interaction with the platinum surface atoms were not considered), this approach proved to be very helpful in the search of new modifiers. The search strategy, which included a systematic reduction of the cinchona alkaloid structure to the essential functional parts and validation of the steric constraints imposed to the interaction complex between modifier and methyl pyruvate by means of molecular modelling, indicated that simple chiral aminoalcohols should be promising substitutes for cinchona alkaloid modifiers. Using the Sharpless symmetric dihydroxylation as a key step, a series of enantiomerically pure 2-hydroxy-2-aryl-ethylamines... [Pg.57]

All applications of the lattice-gas model to liquid-liquid interfaces have been based upon a three-dimensional, typically simple cubic lattice. Each lattice site is occupied by one of a variety of particles. In the simplest case the system contains two kinds of solvent molecules, and the interactions are restricted to nearest neighbors. If we label the two types of solvents molecules S and Sj, the interaction is specified by a symmetrical 2x2 matrix w, where each element specifies the interaction between two neighboring molecules of type 5, and Sj. Whether the system separates into two phases or forms a homogeneous mixture, depends on the relative strength of the cross-interaction W]2 with respect to the self-inter-action terms w, and W22, which can be expressed through the combination ... [Pg.166]

If the position of sample application and the point of entry of the mobile phase are at the center of the plate and the flow of mobile phase is towards the periphery of the plate, then this node of development is called circular chromatography [6,110]. Samples can be injected into the mobile phase, in which case they will be separated as a series of concentric rings. If the samples are applied as a cluster of spots in a radial pattern around the solvent entry position, after development, spots near the origin remain symmetrical and compact trtiile those near the solvent front are compressed in the direction of development and elongated at right angles to this direction. Figure 7.10(A). [Pg.347]

Consider the simple case where both sides of the membrane are in contact with a solution of symmetrical electrolyte BA in a single solvent and the membrane is permeable for only one ionic species. In equilibrium its electrochemical potential (Eq. (3.1.5)) in both solutions adjacent to the membrane has the same value. Thus,... [Pg.423]

The Hamiltonian in Eq. (104) may describe both the process of tunnel inversion or isomerization of a molecule and the inertia effects arising from the symmetric vibrations of the reaction complex AH- B in the cage of the solvent or solid matrix (Fig. 9). In the latter case, the coordinate and the frequency of the symmetric vibration correspond to R and w0. [Pg.148]

They demonstrated that the C2-symmetric bis-benzothiazine (R,R)- 91 was an effective ligand in the asymmetric allylic alkylation reaction. The best result in this case was the reaction of 198 and 199 in the presence of BSA, Pd2(dba)3 and (/ ,/ )-197, which gave the product (S)-200 in 75% yield and 86% ee. More experimental data revealed that solvent effects are very important in this reaction (Scheme 57). Relatively nonpolar solvents resulted in good yields and enantiomeric excesses while reaction in CH3CN and CH2CI2 gave only racemic products in moderate yields (Table 8). [Pg.35]

A somewhat related process, the cobalt-mediated synthesis of symmetrical benzo-phenones from aryl iodides and dicobalt octacarbonyl, is shown in Scheme 6.49 [100]. Here, dicobalt octacarbonyl is used as a combined Ar-I bond activator and carbon monoxide source. Employing acetonitrile as solvent, a variety of aryl iodides with different steric and electronic properties underwent the carbonylative coupling in excellent yields. Remarkably, in several cases, microwave irradiation for just 6 s was sufficient to achieve full conversion An inert atmosphere, a base or other additives were all unnecessary. No conversion occurred in the absence of heating, regardless of the reaction time. However, equally high yields could be achieved by heating the reaction mixture in an oil bath for 2 min. [Pg.141]

The main method for the preparation of different types of organostannanes is the ancient Wilrtz reaction between triorganotin halides or diorganotindihalides. Reactions proceed with or without solvent. Usual solvents are benzene, toluene, xylene, diethyl ether and ethanol. Occasionally hquid ammonia is also used. The preferred metals for this reaction are sodium and lithium. In the case of triorganotin halides, the reaction leads to symmetric hexaorganoditin compounds72 ... [Pg.468]

While Josiphos 41 also possessed an element of atom-centered chirality in the side chain, Reetz reported a new class of ferrocene-derived diphosphines which had planar chirality only ligands 42 and 43, which have C2- and C -symmetry, respectively.87 Rhodium(i)-complexes of ligands (—)-42 and (—)-43 were used in situ as catalysts (0.75 mol%) for the hydroboration of styrene with catecholborane 1 for 12 h in toluene at — 50 °C. The rhodium/ i-symmetric (—)-43 catalyst system was the more enantioselective of the two - ( -l-phenylethanol was afforded with 52% and 77% ee with diphosphines (—)-42 and (—)-43, respectively. In both cases, the regioselectivity was excellent (>99 1). With the same reaction time but using DME as solvent at lower temperature (—60 °C), the rhodium complex of 43 afforded the alcohol product with an optimum 84% ee. [Pg.849]

Fe3+X6...Fe2+X6, which is the reactant of the outer-sphere electron transfer reaction mentioned above when X = Y. Clearly the ground state involves a symmetric linear combination of a state with the electron on the right (as written) and one with the electron on the left. Thus we could create the localized states by using the SCRF method to calculate the symmetric and antisymmetric stationary states and taking plus and minus linear combinations. This is reasonable but does not take account of the fact that the orbitals for non-transferred electrons should be optimized for the case where the transferred electron is localized (in contrast to which, the SCRF orbitals are all optimized for the delocalized adiabatic structure). The role of solvent-induced charge localization has also been studied for ionic dissociation reactions [109],... [Pg.66]

The versatility of the PCH2/KI catalytic system is further demonstrated by its ability to catalyze the oxidative carbonylation of primary amines to symmetrically substituted ureas (Eq. 51), still under mild conditions (100 °C, 16 atm of CO, 4 atm of air in DME as the solvent) and with unprecedented catalytic efficiencies for this kind of reaction (up to ca. 2500 mol of product per mol of Pd) [274,275]. In some cases, working in the presence of an excess of CO2 (40 atm) had a beneficial effect on the reaction rate and product selectivity. [Pg.269]


See other pages where Symmetric solvent case is mentioned: [Pg.304]    [Pg.64]    [Pg.447]    [Pg.15]    [Pg.59]    [Pg.2589]    [Pg.213]    [Pg.28]    [Pg.628]    [Pg.251]    [Pg.432]    [Pg.336]    [Pg.70]    [Pg.459]    [Pg.262]    [Pg.103]    [Pg.184]    [Pg.283]    [Pg.25]    [Pg.149]    [Pg.190]    [Pg.195]    [Pg.318]    [Pg.562]    [Pg.121]    [Pg.125]    [Pg.110]    [Pg.234]    [Pg.25]    [Pg.65]    [Pg.248]    [Pg.60]    [Pg.35]    [Pg.28]    [Pg.116]   


SEARCH



Solvent symmetric

© 2024 chempedia.info