Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Surface 6 interaction, with coupling

Initial reconstruction caused by flame armealing is stopped when the surface is cooled in the atmosphere, though not in water. The rate of transition from unreconstructed to reconstructed surface is determined by the height of the activation barrier [348], especially at the room temperature. Reconstruction may be removed by adsorption of atoms and molecules [349], since unreconstructed, and thus, more open surface, interacts with the adsorbates stronger than does the densely packed surface. Therefore, the removal of reconstructed surface proceeds from the less to the more energetically favored state [348]. Reconstruction coupled with the formation of more dense surface structure may lead to quite a strong increase in the number of surface atoms. For instance, the Au(100)-(1 X 1) Au(100)-(hex) reconstruction is accompanied by the increase in the number of surface atoms by 24%. [Pg.877]

Modeling Fundamental Aspects of the Surface Chemistry of Oxides and their Interactions with Coupling Agents... [Pg.19]

Theoretical models of the film viscosity lead to values about 10 times smaller than those often observed [113, 114]. It may be that the experimental phenomenology is not that supposed in derivations such as those of Eqs. rV-20 and IV-22. Alternatively, it may be that virtually all of the measured surface viscosity is developed in the substrate through its interactions with the film (note Fig. IV-3). Recent hydrodynamic calculations of shape transitions in lipid domains by Stone and McConnell indicate that the transition rate depends only on the subphase viscosity [115]. Brownian motion of lipid monolayer domains also follow a fluid mechanical model wherein the mobility is independent of film viscosity but depends on the viscosity of the subphase [116]. This contrasts with the supposition that there is little coupling between the monolayer and the subphase [117] complete explanation of the film viscosity remains unresolved. [Pg.120]

This corresponds to the physician s stethoscope case mentioned above, and has been realized [208] by bringing one leg of a resonatmg 33 kHz quartz tiinmg fork close to the surface of a sample, which is being rastered in the x-y plane. As the fork-leg nears the sample, the fork s resonant frequency and therefore its amplitude is changed by interaction with the surface. Since the behaviour of the system appears to be dependent on the gas pressure, it may be assumed that the coupling is due to hydrodynamic mteractions within the fork-air-sample gap. Since the fork tip-sample distance is approximately 200 pm -1.120), tire teclmique is sensitive to the near-field component of the scattered acoustic signal. 1 pm lateral and 10 mn vertical resolutions have been obtained by the SNAM. [Pg.1717]

Thermal ionization. Takes place when an atom or molecule interacts with a heated surface or is in a gaseous environment at high temperatures. Examples of the latter include a capillary arc plasma, a microwave plasma, or an inductively coupled plasma. [Pg.439]

Once a metal surface has been conditioned by one of the above methods, a coupling agent composed of a bifimctional acid—methacrylate similar to a dentin adhesive is appHed. This coupling material is usually suppHed as a solvent solution that is painted over the conditioned metal surface. The acidic functional group of the coupling molecule interacts with the metal oxide surface while the methacrylate functional group of the molecule copolymerizes with the resin cement or restorative material placed over it (266,267). [Pg.493]

Fig. 20. Schematic representation of the hydrolysis of silane coupling agents and their subsequent interaction with hydroxylated mineral surfaces. Fig. 20. Schematic representation of the hydrolysis of silane coupling agents and their subsequent interaction with hydroxylated mineral surfaces.
Muscarinic acetylcholine receptors (mAChRs) form a class of cell surface receptors that are activated upon binding of the neurotransmitter, acetylcholine. Structurally and functionally, mAChRs are prototypical members of the superfamily of G protein-coupled receptors. Following acetylcholine binding, the activated mAChRs interact with distinct classes of heterotrimeric G proteins resulting in the activation or inhibition of distinct downstream signaling cascades. [Pg.794]

The 3 isozymes are activated by G protein-coupled receptors through two different mechanisms [2]. The first involves activated a-subunits of the Gq family of heterotrimeric G proteins (Gq, Gn, Gi4, G15/16). These subunits activate the (31, (33 and (34 PLC isozymes through direct interaction with a sequence in the C terminus. The domain on the Gqa-subunit that interacts with the (3 isozymes is located on a surface a-helix that is adjacent to the Switch III region, which undergoes a marked conformational change during activation. The second mechanism of G protein activation of PLC 3 isozymes involves (3y-subunits released from Gi/0 G proteins by their pertussis toxin-sensitive activation by certain receptors. The 3y-subunits activate the 32 and 33 PLC isozymes by interacting with a sequence between the conserved X and Y domains. [Pg.969]

There is a significant scatter between the values of the Poiseuille number in micro-channel flows of fluids with different physical properties. The results presented in Table 3.1 for de-ionized water flow, in smooth micro-channels, are very close to the values predicted by the conventional theory. Significant discrepancy between the theory and experiment was observed in the cases when fluid with unknown physical properties was used (tap water, etc.). If the liquid contains even a very small amount of ions, the electrostatic charges on the solid surface will attract the counter-ions in the liquid to establish an electric field. Fluid-surface interaction can be put forward as an explanation of the Poiseuille number increase by the fluid ionic coupling with the surface (Brutin and Tadrist 2003 Ren et al. 2001 Papautsky et al. 1999). [Pg.129]

The most obvious way to raise the sensitivity of sensors to RGMAs is by activating their surface with additives that actively interact with metastable atoms and have some electron coupling with semiconductor. These additives can be microcrystals of metals. As previously shown, the de-excitation of RGMAs on a metallic surface truly proceeds at high efficiency and is accompanied by electron emission. Microcrystals of the metal being applied to a semiconductor surface have some electron coupling with the carrier [159]. These two circumstances allow one to suppose that the activation of metals by microcrystals adds to the sensitivity of semiconductor films to metastable atoms. [Pg.326]


See other pages where Surface 6 interaction, with coupling is mentioned: [Pg.182]    [Pg.999]    [Pg.531]    [Pg.999]    [Pg.167]    [Pg.287]    [Pg.288]    [Pg.586]    [Pg.54]    [Pg.301]    [Pg.6]    [Pg.903]    [Pg.1824]    [Pg.2222]    [Pg.2810]    [Pg.1008]    [Pg.351]    [Pg.493]    [Pg.419]    [Pg.436]    [Pg.389]    [Pg.477]    [Pg.582]    [Pg.281]    [Pg.651]    [Pg.143]    [Pg.555]    [Pg.802]    [Pg.950]    [Pg.369]    [Pg.241]    [Pg.22]    [Pg.336]    [Pg.218]    [Pg.602]    [Pg.66]    [Pg.74]   
See also in sourсe #XX -- [ Pg.60 , Pg.61 , Pg.62 , Pg.63 ]




SEARCH



Coupled interactions

Coupling interactions

Interacting Surface

Interacting coupling

Surface, interaction with

© 2024 chempedia.info