Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hydroxyl, surface

Representative results are given in Table 5.4. From column 7, it is seen that the ratio iV,/ Afj - - N/,) is in the region of 1 2 (in contrast to the 1 1 found with silica) suggesting that each molecule of water in the physisorbed monolayer is bonded to two surface hydroxyl groups. [Pg.277]

No clear picture of the primary radical intermediate(s) in the HO2 photooxidation of water has appeared. The nature of the observed radical species depends on the origin and pretreatment of the HO2 sample, on the conditions and extent of its reduction, on the extent of surface hydroxylation, and on the presence of adventitious electron acceptors such as molecular oxygen (41). The hole is trapped on the terminal OH group (54). [Pg.404]

Chemical Grafting. Polymer chains which are soluble in the suspending Hquid may be grafted to the particle surface to provide steric stabilization. The most common technique is the reaction of an organic silyl chloride or an organic titanate with surface hydroxyl groups in a nonaqueous solvent. For typical interparticle potentials and a particle diameter of 10 p.m, steric stabilization can be provided by a soluble polymer layer having a thickness of - 10 nm. This can be provided by a polymer tail with a molar mass of 10 kg/mol (25) (see Dispersants). [Pg.547]

Urethane sealants have good inherent adhesion to most substrates, but silane adhesion promoters are often used to improve this adhesion. Epoxy-, amino-, and mercapto-functional silanes are the most common because of their dual reactive nature. The silane end can react with surface hydroxyls the epoxy, amino, or mercapto end can react with the isocyanate. [Pg.311]

Chemical stabilization involves removing the concentration of surface hydroxyls and surface defects, such as metastable three-membered rings, below a critical level so that the surface is not stressed by rehydroxylation in use. Thermal stabilization involves reducing the surface area sufficiently to enable the material to be used at a given temperature without reversible stmctural changes. The mechanisms of thermal and chemical stabilization are interrelated because of the extreme effects that surface hydroxyls and chemisorbed water have on stmctural changes. Full densification of gels, such as the... [Pg.255]

Many chlorine compounds, including methyl chlorosilanes, such as ClSi(CH2)3, Cl2Si(CH3)2, Cl3Si(CH3) tetrachlorosilane [10026-04-7] SiCl chlorine, CI2 and carbon tetrachloride, CCl, can completely react with molecular surface hydroxyl groups to form hydrochloric acid (40), which then desorbs from the gel body in a temperature range of 400—800°C, where the pores are still interconnected. Carbon tetrachloride can yield complete dehydration of ultrapure gel—siUca optical components (3,23). [Pg.256]

Table 2. Absorption Peaks of Gel-Silica Monolith Pore Water and Surface Hydroxyl Groups ... Table 2. Absorption Peaks of Gel-Silica Monolith Pore Water and Surface Hydroxyl Groups ...
Biocorrosion of stainless steel is caused by exopolymer-producing bacteria. It can be shown that Fe is accumulated in the biofilm [2.62]. The effect of bacteria on the corrosion behavior of the Mo metal surface has also been investigated by XPS [2.63]. These last two investigations indicate a new field of research in which XPS can be employed successfully. XPS has also been used to study the corrosion of glasses [2.64], of polymer coatings on steel [2.65], of tooth-filling materials [2.66], and to investigate the role of surface hydroxyls of oxide films on metal [2.67] or other passive films. [Pg.26]

Raman spectroscopy has provided information on catalytically active transition metal oxide species (e. g. V, Nb, Cr, Mo, W, and Re) present on the surface of different oxide supports (e.g. alumina, titania, zirconia, niobia, and silica). The structures of the surface metal oxide species were reflected in the terminal M=0 and bridging M-O-M vibrations. The location of the surface metal oxide species on the oxide supports was determined by monitoring the specific surface hydroxyls of the support that were being titrated. The surface coverage of the metal oxide species on the oxide supports could be quantitatively obtained, because at monolayer coverage all the reactive surface hydroxyls were titrated and additional metal oxide resulted in the formation of crystalline metal oxide particles. The nature of surface Lewis and Bronsted acid sites in supported metal oxide catalysts has been determined by adsorbing probe mole-... [Pg.261]

Coupling to a mineral surface requires the presence of active hydroxyls on the substrate. The coupling reaction is a multi-step process that proceeds from a state of physisorption through hydrogen bond formation to actual covalent bond formation through condensation of surface hydroxyls with silanols ... [Pg.435]

The numerous surface hydroxyl groups provide attachment points for other functional groups and ligands. [Pg.148]

The formation of the surface chromate- and dichromate-type compounds as a result of the reaction of CrOg with surface hydroxyls has been ascer-... [Pg.176]

In the transmission electron microscopy (TEM) images, the starch nanoplatelets (SNPs) are believed to aggregate as a result of hydrogen bond interactions due to the surface hydroxyl groups [13] (Fig. lA). Blocking these interactions by relatively large molecular weight molecules obviously improves the individualization of the nanoparticles. The acetylated starch and cellulose nanoparticles (SAcNPs and CelAcNPs) appeared more individualized and monodispersed than their unmodified counterparts with a size of about 50 nm (Fig. IB C). [Pg.124]

The possibility exists that a surface hydroxyl group on silica can itself function as a proton donor (12),... [Pg.300]


See other pages where Hydroxyl, surface is mentioned: [Pg.279]    [Pg.270]    [Pg.5]    [Pg.5]    [Pg.344]    [Pg.470]    [Pg.491]    [Pg.53]    [Pg.73]    [Pg.256]    [Pg.22]    [Pg.141]    [Pg.127]    [Pg.436]    [Pg.445]    [Pg.446]    [Pg.160]    [Pg.188]    [Pg.334]    [Pg.336]    [Pg.336]    [Pg.54]    [Pg.198]    [Pg.304]    [Pg.361]    [Pg.130]    [Pg.56]    [Pg.123]    [Pg.333]    [Pg.719]    [Pg.452]    [Pg.455]    [Pg.460]    [Pg.280]    [Pg.5]    [Pg.8]   
See also in sourсe #XX -- [ Pg.65 ]

See also in sourсe #XX -- [ Pg.65 ]

See also in sourсe #XX -- [ Pg.16 , Pg.17 , Pg.18 ]

See also in sourсe #XX -- [ Pg.165 , Pg.166 ]




SEARCH



Hydroxylated surface

© 2019 chempedia.info