Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Surface complexation behavior

Such nonequilihrium surface tension effects ate best described ia terms of dilatational moduh thanks to developments ia the theory and measurement of surface dilatational behavior. The complex dilatational modulus of a single surface is defined ia the same way as the Gibbs elasticity as ia equation 2 (the factor 2 is halved as only one surface is considered). [Pg.464]

Borrok et al. (2004a) used potentiometric titration to measure Cd sorption by different bacterial consortia, and a surface complexation approach to determine thermodynamic stability constants. When the data were modeled by adopting a single set of stability constants, a similar sorption behavior was shown by a wide range of bacterial species. Further, current models that rely on pure strains of laboratory-cultivated bacterial species appear to overestimate the extent of metal biosorption in natural systems. [Pg.86]

The underpotential deposition (UPD) of metals on foreign metal substrates is of importance in understanding the first phase of metal electrodeposition and also as a means for preparing electrode surfaces with interesting electronic and morphological properties for electrocatalytic studies. The UPD of metals on polycrystalline substrates exhibit quite complex behavior with multiple peaks in the linear sweep voltammetry curves. This behavior is at least partially due to the presence of various low and high index planes on the polycrystalline surface. The formation of various ordered overlayers on particular single crystal surface planes may also contribute to the complex peak structure in the voltammetry curves. [Pg.141]

Based upon analogies between surface and molecular coordination chemistry outlined in Table 1, we have recently set forth to investigate the interaction of surface-active and reversibly electroactive moieties with the noble-metal electrocatalysts Ru, Rh, Pd, Ir, Pt and Au. Our interest in this class of compounds is based on the fact that chemisorption-induced changes in their redox properties yield important information concerning the coordination/organometallic chemistry of the electrode surface. For example, alteration of the reversible redox potential brought about by the chemisorption process is a measure of the surface-complex formation constant of the oxidized state relative to the reduced form such behavior is expected to be dependent upon the electrode material. In this paper, we describe results obtained when iodide, hydroquinone (HQ), 2,5-dihydroxythiophenol (DHT), and 3,6-dihydroxypyridazine (DHPz), all reversibly electroactive... [Pg.529]

Few studies have systematically examined how chemical characteristics of organic reductants influence rates of reductive dissolution. Oxidation of aliphatic alcohols and amines by iron, cobalt, and nickel oxide-coated electrodes was examined by Fleischman et al. (38). Experiments revealed that reductant molecules adsorb to the oxide surface, and that electron transfer within the surface complex is the rate-limiting step. It was also found that (i) amines are oxidized more quickly than corresponding alcohols, (ii) primary alcohols and amines are oxidized more quickly than secondary and tertiary analogs, and (iii) increased chain length and branching inhibit the reaction (38). The three different transition metal oxide surfaces exhibited different behavior as well. Rates of amine oxidation by the oxides considered decreased in the order Ni > Co >... [Pg.457]

More recently, the reconstruction of the clean W(100) surface has also been studied by He diffraction. These studies reveal a complex behavior during the transition. Only at temperatures below 240 K sharp diffraction spots centered at the (1/2,1/2) positions are observed. In the temperature range between 400 K and 240 K broad superstructure spots are observed which progressively shift to the (1/2,1/2) position upon cooling. Lapujoulade and Salanon explain this behavior in the framework of a domain wall model reconstructed domains of various sizes are separated by dense domain walls, which disappear continuously upon cooling. [Pg.267]

As pentoses are readily accessible from wheat straw and bran [26, 27], the telomerization of 1 with a bran syrup having the composition given in Table 15 led to a crude mixture containing 1% bran symp, 67% monooctadienylethers (18, 23), 31% dioctadienylethers (24—26), and 1% trioctadienylethers (Fig. 21). The physical evaluation of this mixture is given in Fig. 22 and revealed satisfactory surface-active behavior of this crude mixture although no sharp value of CMC could be determined, as can happen with complex mixtures. Continuous decrease of... [Pg.114]

Hexacyanoferrates were immobilized on Au covered with SAM of 3,3 -thiodipropionic acid [86]. It has been found from voltammetric studies that the surface coverage of hexacyanoferrate is close to one monolayer and such an electrode exhibits very good surface redox behavior. Cheng et al. [87] have described the formation of an extremely thin multilayer film of polybasic lanthanide heteropolytungstate-molybdate complex and cationic polymer of quaternary poly(4-vinylpyridine), partially complexed with osmium bis(2,2 -bipyridine) on a gold electrode precoated with a cysteamine SAM. Consequently, adsorption of inorganic species might also be related to the properties of SAMs. This problem will be discussed in detail in a separate section later. [Pg.852]

Using an automated film balance the behavior of mixed monomolecular films exhibiting deviations from ideality was studied. Particular attention was paid to condensation effects obtained when cholesterol is mixed with a more expanded component. The deviations at various film pressures are discussed in terms of the partial molecular areas of the film components. Slope changes in these plots are caused by phase transitions of the expanded monolayer component and do not indicate the formation of surface complexes. In addition, the excess free energies, entropies, and enthalpies of mixing were evaluated, but these parameters could be interpreted only for systems involving pure expanded components, for which it is clear that the observed condensation effects must involve molecular interactions. [Pg.138]

Rolling friction is often found to be proportional to the velocity, but more complex relationships may be observed, depending on the combination of the bodies. For a soft, viscoelastic sphere on a hard substrate, Brilliantov et al. [464] predicted a linear dependence of rolling friction on speed. For a hard cylinder on a viscous surface, a much more complex behavior was found [465,466], At lower speeds, the rolling friction increases with speed to reach a maximum value and then decreases at higher speeds. The reason is an effective stiffening of the substrate at higher speeds. [Pg.229]

When ethylene is adsorbed on bare nickel at 35° C. or on either bare or hydrogen-covered nickel at 150° C., the intensity of the C—H bands, shown as A of Fig. 3, is small compared with those of the associated chemisorbed ethylene shown in Fig. 2. When the species represented by A is treated with H2 at 35° C., the band intensities increased as is shown in B of Fig. 3. This behavior shows that A is due to a dissociatively chemisorbed ethylene in which the number of hydrogens per carbon is low (7). The species obtained by dissociative chemisorption will be referred to as a surface complex. It is doubtful whether the surface complex has a specific stoichiometric composition. Rather it appears that the carbon-hydrogen ratio will depend on the severity of the dehydrogenation conditions. In some cases it appears that a surface carbide, which has no hydrogens, is obtained. Even in this case the carbons appear to be easily rehydrogenated to adsorbed alkyl groups. [Pg.6]

The reasons behind a complex behavior in the relative emission intensity or lifetime vs quencher concentration plots (typically the quencher is the analyte species or a third party, the concentration of which depends on the analyte level [44]) are manifold and may be dependent on the nature of the inorganic support surface, its interaction with the organic polymer matrix, the... [Pg.204]


See other pages where Surface complexation behavior is mentioned: [Pg.141]    [Pg.522]    [Pg.524]    [Pg.141]    [Pg.522]    [Pg.524]    [Pg.283]    [Pg.33]    [Pg.392]    [Pg.430]    [Pg.40]    [Pg.87]    [Pg.217]    [Pg.439]    [Pg.200]    [Pg.81]    [Pg.627]    [Pg.146]    [Pg.20]    [Pg.42]    [Pg.83]    [Pg.125]    [Pg.181]    [Pg.310]    [Pg.317]    [Pg.137]    [Pg.225]    [Pg.186]    [Pg.272]    [Pg.486]    [Pg.212]    [Pg.334]    [Pg.162]    [Pg.197]    [Pg.283]    [Pg.188]    [Pg.153]    [Pg.461]    [Pg.24]    [Pg.71]    [Pg.873]   
See also in sourсe #XX -- [ Pg.524 ]




SEARCH



Complex behavior

Surface behavior

Surface complex

Surface complexation

© 2024 chempedia.info