Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Sulfuric acid, reaction with alkenes

The reason that dialkyl sulfates seldom are prepared by direct reaction of the alcohol with H2S04 is that the mono esters react rapidly on heating to eliminate sulfuric acid and form alkenes, as explained in Section 15-5C. [Pg.629]

Hydrogen fluoride (HF) is often used as a catalyst for alkenes, since there is less tar (fewer decomposition and polymeric by-products) and the volatile catalyst is easily removed. Both ferric chloride (FeCl3) and BF3 are common catalysts for alkene-aromatic coupling. Typical alkyne catalysts are aluminum chloride, gallium trichloride (GaCl3), BF3, and sulfuric acid. Reaction of a mixture of xylenes with a trace amount of BF3 in liquid HF gave the thermodynamic mixture 18% ortho, 60% meta, and 22% para but treatment with excess BF3 gave virtually 100% m-xylene. 07b,117... [Pg.1088]

Some specific reactions of this type that we shall study in this chapter include addition of hydrogen halides, sulfuric acid, water (in the presence of an acid catalyst), and halogens. Later we shall also study some specialized reagents that undergo addition reactions with alkenes. [Pg.338]

For reactions in H2O an analogous discussion applies as for reactions with the protonated sulfuric acid form. The reactive intermediate now, however, is H3O+. H3O+ has a much stronger OH bond than H3SO4 +, and hence its reactivity is much less. The species that is formed by reaction with alkene in an aqueous solution can best be compared with protonated alcohols forms typically known as alkyl oxonimn ionsl l Protonated alkene is hydrated in aqueous media. The formation of alkyloxonimn ions instead of the carbenium ions in H2O can be viewed as due to the basicity of water. The major difference between solid acids and acidic solutions arises because the hydrogen atoms in solid acids are part of strong covalent bonds and are not present as protons that are present in in the solution phase. In a solution there is a equilibrium between non-dissociated acid molecules and the... [Pg.233]

When cyclohexanol is treated with concentrated sulfuric acid, the product is cyclohexene, and the reaction has a short half-life. When A is treated with concentrated sulfuric acid, however, no alkene is formed. Draw the expected alkene product and then speculate on why A is so unreactive in an El reaction. [Pg.614]

It is necessary to use different procedures to prepare secondary alkyl bromides from secondary alcohols because such alcohols are easily dehydrated by concentrated sulfuric acid to give alkenes by way of Equations 14.13 and 14.14. In fact, the acid-catalyzed dehydration of secondary and tertiary alcohols is a common method for synthesizing alkenes (Sec. 10.3). This problem may be circumvented by using concentrated hydrobromic acid however, it is better to prepare secondary alkyl bromides by the reaction of secondary alcohols with phosphorus tribromide, PBrg (Eq. 14.16). [Pg.467]

In another vein, addition of sulfuric acid to an alkene in the presence of a nitrile (R-C=N) or hydrogen cyanide (HC N), either of which can react with the carbo-cation as a nucleophile, apparently leads to nitrilium ions. These ions, on hydrolysis, produce amides. As amides can be hydrolyzed in acid or basic medium to amines and carboxylic acids, the overall process (the Ritter reaction) of carbocation... [Pg.350]

Dimerization in concentrated sulfuric acid occurs mainly with those alkenes that form tertiary carbocations In some cases reaction conditions can be developed that favor the formation of higher molecular weight polymers Because these reactions proceed by way of carbocation intermediates the process is referred to as cationic polymerization We made special mention m Section 5 1 of the enormous volume of ethylene and propene production in the petrochemical industry The accompanying box summarizes the principal uses of these alkenes Most of the ethylene is converted to polyethylene, a high molecular weight polymer of ethylene Polyethylene cannot be prepared by cationic polymerization but is the simplest example of a polymer that is produced on a large scale by free radical polymerization... [Pg.267]

When applied to the synthesis of ethers the reaction is effective only with primary alcohols Elimination to form alkenes predominates with secondary and tertiary alcohols Diethyl ether is prepared on an industrial scale by heating ethanol with sulfuric acid at 140°C At higher temperatures elimination predominates and ethylene is the major product A mechanism for the formation of diethyl ether is outlined m Figure 15 3 The individual steps of this mechanism are analogous to those seen earlier Nucleophilic attack on a protonated alcohol was encountered m the reaction of primary alcohols with hydrogen halides (Section 4 12) and the nucleophilic properties of alcohols were dis cussed m the context of solvolysis reactions (Section 8 7) Both the first and the last steps are proton transfer reactions between oxygens... [Pg.637]

Acid-Gatalyzed Synthesis. The acid-catalysed reaction of alkenes with hydrogen sulfide to prepare thiols can be accompHshed using a strong acid (sulfuric or phosphoric acid) catalyst. Thiols can also be prepared continuously over a variety of soHd acid catalysts, such as seoHtes, sulfonic acid-containing resin catalysts, or aluminas (22). The continuous process is utilised commercially to manufacture the more important thiols (23,24). The acid-catalysed reaction is commonly classed as a Markownikoff addition. Examples of two important industrial processes are 2-methyl-2-propanethiol and 2-propanethiol, given in equations 1 and 2, respectively. [Pg.10]

Fluorobenzene is readily alkylated with alkenes in the presence of protic acids, however, the isomenc purity of the product is poor, and polysubstitution can result Thus, propene and sulfuric acid alkylate fluorobenzene at 20 C to yield a 45 55 ortho/para ratio of the inonoalkyl product m addition to di- and triiso propylfluorobenzene [i5] The reaction of benzene and trifluoropropene at 25 °C in HF-BF3 gives a mixture of mono-, bis-, and tns(3,3,3-trifluoropropyl)ben zene [72, 75] (equation 12)... [Pg.412]

Dimerization in concentrated sulfuric acid occurs mainly with those alkenes that fonn tertiary carbocations. In some cases reaction conditions can be developed that favor the formation of higher molecular-weight polymers. Because these reactions proceed by way of carbocation intermediates, the process is refened to as cationic polymerization. [Pg.267]

The chemistry of alkynes is dominated by electrophilic addition reactions, similar to those of alkenes. Alkynes react with HBr and HC1 to yield vinylic halides and with Br2 and Cl2 to yield 1,2-dihalides (vicinal dihalides). Alkynes can be hydrated by reaction with aqueous sulfuric acid in the presence of mercury(ll) catalyst. The reaction leads to an intermediate enol that immediately isomerizes to yield a ketone tautomer. Since the addition reaction occurs with Markovnikov regiochemistry, a methyl ketone is produced from a terminal alkyne. Alternatively, hydroboration/oxidation of a terminal alkyne yields an aldehyde. [Pg.279]

Compound A, C H O, was found to be an optically active alcohol. Despite its apparent unsaturation, no hydrogen was absorbed on catalytic reduction over a palladium catalyst. On treatment of A with dilute sulfuric acid, dehydration occurred and an optically inactive alkene B, Q iH14, was produced as the major product. Alkene B, on ozonolysis, gave two products. One product was identified as propanal, CH3CH2CHO. Compound C, the other product, was shown to be a ketone, CgHgO. How many degrees of unsaturation does A have Write the reactions, and identify A, B, and C. [Pg.329]

Diethyl ether and other simple symmetrical ethers are prepared industrially by the sulfuric acid-catalyzed dehydration of alcohols. The reaction occurs by SN2 displacement of water from a protonated ethanol molecule by the oxygen atom of a second ethanol. Unfortunately, the method is limited to use with primary alcohols because secondary and tertiary alcohols dehydrate by an El mechanism to yield alkenes (Section 17.6). [Pg.654]

Abstract The photoinduced reactions of metal carbene complexes, particularly Group 6 Fischer carbenes, are comprehensively presented in this chapter with a complete listing of published examples. A majority of these processes involve CO insertion to produce species that have ketene-like reactivity. Cyclo addition reactions presented include reaction with imines to form /1-lactams, with alkenes to form cyclobutanones, with aldehydes to form /1-lactones, and with azoarenes to form diazetidinones. Photoinduced benzannulation processes are included. Reactions involving nucleophilic attack to form esters, amino acids, peptides, allenes, acylated arenes, and aza-Cope rearrangement products are detailed. A number of photoinduced reactions of carbenes do not involve CO insertion. These include reactions with sulfur ylides and sulfilimines, cyclopropanation, 1,3-dipolar cycloadditions, and acyl migrations. [Pg.157]

There are actually three reactions called by the name Schmidt reaction, involving the addition of hydrazoic acid to carboxylic acids, aldehydes and ketones, and alcohols and alkenes. The most common is the reaction with carboxylic acids, illustrated above.Sulfuric acid is the most common catalyst, but Lewis acids have also been used. Good results are obtained for aliphatic R, especially for long chains. When R is aryl, the yields are variable, being best for sterically hindered compounds like mesi-toic acid. This method has the advantage over 18-13 and 18-14 that it is just one laboratory step from the acid to the amine, but conditions are more drastic. Under the acid conditions employed, the isocyanate is virtually never isolated. [Pg.1413]

The hydration of propylene with sulfuric acid catalyst in high-temperature water was investigated using a flow reaction system.31 The major product is isopropanol. A biopolymer-metal complex, wool-supported palladium-iron complex (wool-Pd-Fe), has been found to be a highly active catalyst for the hydration of some alkenes to the corresponding alcohols. The yield is greatly affected by the Pd/Fe molar ratio in the wool-Pd-Fe complex catalyst and the catalyst can be reused several times without remarkable change in the catalytic activity.32... [Pg.48]

Disubstituted Alkenes. Simple 1,2-disubstituted alkenes such as 2-octene or cyclohexene, which produce only secondary aliphatic carbocation reaction intermediates, do not undergo reduction upon treatment with a Brpnsted acid and an organosilicon hydride. Even when extreme conditions are employed, only traces of reduction products are detected.192 203 207-210,214 An exception is the report that 4-methyl-2-pentene forms 2-methylpentane in 70% yield when heated to 50° for 20 hours with a mixture of Et3SiH/TFA containing a catalytic amount of sulfuric acid. It is believed that 4-methyl-2-pentene is isomerized to 2-methyl-2-pentene prior to reduction.203... [Pg.36]

Electrophilic substitution of the ring hydrogen atom in 1,3,4-oxadiazoles is uncommon. In contrast, several reactions of electrophiles with C-linked substituents of 1,3,4-oxadiazole have been reported. 2,5-Diaryl-l,3,4-oxadiazoles are bromi-nated and nitrated on aryl substituents. Oxidation of 2,5-ditolyl-l,3,4-oxadiazole afforded the corresponding dialdehydes or dicarboxylic acids. 2-Methyl-5-phenyl-l,3,4-oxadiazole treated with butyllithium and then with isoamyl nitrite yielded the oxime of 5-phenyl-l,3,4-oxadiazol-2-carbaldehyde. 2-Chloromethyl-5-phenyl-l,3,4-oxadiazole under the action of sulfur and methyl iodide followed by amines affords the respective thioamides. 2-Chloromethyl-5-methyl-l,3,4-oxadia-zole and triethyl phosphite gave a product, which underwent a Wittig reation with aromatic aldehydes to form alkenes. Alkyl l,3,4-oxadiazole-2-carboxylates undergo typical reactions with ammonia, amines, and hydrazines to afford amides or hydrazides. It has been shown that 5-amino-l,3,4-oxadiazole-2-carboxylic acids and their esters decarboxylate. [Pg.420]


See other pages where Sulfuric acid, reaction with alkenes is mentioned: [Pg.1178]    [Pg.666]    [Pg.1074]    [Pg.1074]    [Pg.134]    [Pg.123]    [Pg.1074]    [Pg.308]    [Pg.556]    [Pg.155]    [Pg.359]    [Pg.981]    [Pg.191]    [Pg.734]    [Pg.993]    [Pg.113]    [Pg.153]    [Pg.1026]    [Pg.337]    [Pg.801]    [Pg.804]    [Pg.17]   
See also in sourсe #XX -- [ Pg.760 ]




SEARCH



Acids reaction with alkenes

Alkenes acidity

Alkenes with sulfuric acid

Alkenes, with acids

Reaction with alkenes

Reaction with sulfuric acid

Sulfur reaction with

Sulfur reactions with alkenes

Sulfuric acid reactions

© 2024 chempedia.info